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Zusammenfassung

Um die Systemantworten eines Ökosystems auf klimatische Faktoren zu erfassen,
bedarf es umfangreicher ökologischer und meteorologischer Messungen. Ein typisches
Beispiel sind die zeitlich hochaufgelösten Messungen der Kohlenstoff-Austauschflüsse
zwischen terrestrischen Ökosystemen und der Atmosphäre mit der Eddy-Kovarianz-
Technik. Die erhaltenen Ökosystemdatensätze zeichnen sich im allgemeinen durch
folgende Eigenschaften aus: hochaufgelöst, mehrdimensional, verrauscht, zum Teil
auch inkonsistent oder lückenhaft.

Ziel dieser Arbeit war es, die zugrundeliegenden kausalen Zusammenhänge mit
möglichst wenigen Grundannahmen aus solchen Datensätzen zu extrahieren. Dazu
wurde eine induktive Methodologie entwickelt, die sowohl auf gemessene als auch
synthetische Daten anwendbar ist. Die verschiedenen Einsatzbereiche der Methodo-
logie wurden am Beispiel von Kohlenstoffmessungen über dem Buchenwald Hainich
aufgezeigt. Sie reichen von der allgemeinen Charakterisierung der Ökosystemantwort
über das Testen spezifischer Hypothesen hin zur Überprüfung konkurrierender semi-
empirischer Gleichungen und Evaluierung terrestrischer Biosphärenmodelle. Als Ne-
benprodukt kann die Methodologie auch zum Füllen der Messlücken genutzt werden.

Die rein von den Daten abgeleiteten ökophysiologischen Ergebnisse untermauer-
ten existierende Hypothesen und wiesen aber auch auf relevante abweichende Fakten
hin. Als neues „Sichtfenster zu den Daten“ kann die entwickelte induktive Methodo-
logie als Bindeglied zwischen den Messdaten und ihrer semi-empirischen Darstellung
in Modellen genutzt werden. Dies dient sowohl dem Verständnis der den Daten zu-
grundeliegenden Prozesse als auch ihrer Implementierung in Modellen. Da die syste-
matische Herangehensweise sich allgemein auf Ökosystemdatensätze anwenden lässt,
kann sie zukünftig auch für andere gemessene oder modellierte Systemantworten in
unterschiedlichen Ökosystemen eingesetzt werden.
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Chapter 1

Introduction

To understand more about the global carbon cycle, high resolution measurements of
the carbon exchange (fluxes) between terrestrial ecosystems and the atmosphere are
taken at many sites in the world. Due to the complexity of the system measured and
to limitations of the measurement technique itself, the obtained ecosystem datasets
are highly complex, noisy, and even fragmented. The underlying causalities cannot
be obtained just by visual evaluation of the measurements, but require additional
modeling.

The methodology developed here attempts to provide a systematic body of induc-
tive modeling procedures to extract these causalities with as few prior assumptions
as possible. The underlying ecophysiological relationships, such as the hierarchy of
the climatic controls or their multivariate dependencies, are extracted directly from
the ecosystem dataset. This new access to the data enables a wide range of ecophysi-
ological applications, as will be demonstrated on carbon flux measurements from the
Hainich forest site.

This introductory chapter provides some background on the global carbon cycle
(Section 1.1), a description of the data domain (Section 1.2), the basic concept of the
methodology (Section 1.3), and an outline of the thesis (Section 1.4).

1
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Figure 1.1: Overview of the global carbon fluxes (after IPCC, 2007; Levin, 2009).
(Gross fluxes are marked in black and net fluxes in red.)

1.1 Background: The global carbon cycle

Because of its large abundance in the atmosphere, carbon dioxide (CO2) is the most
important anthropogenic greenhouse gas. Its global cycle can be divided into three
main compartments: atmosphere, terrestrial biosphere, and ocean, see Figure 1.1.
Natural processes, such as photosynthesis, plant and soil respiration, or sea surface
exchange, lead to massive fluxes between the terrestrial biosphere and the atmosphere
(∼ 120 PgC) and between the ocean and the atmosphere (∼ 90 PgC). The two major
sources of anthropogenic CO2 emissions are from fossil fuel combustion (∼ +7 PgC)
and land-use change (∼ +2 PgC). Not all of the emitted CO2 stays in the atmosphere.
The ocean and the terrestrial biosphere currently act as net sinks of carbon and remove
about half of the human-caused emissions. However, the remaining emissions are
responsible for a more than 75% increase in atmospheric CO2 since the pre-industrial
times (IPCC, 2007).

Shown in Figure 1.2 is the development of atmospheric CO2 sources and sinks
over the last 50 years. Although CO2 emissions from fossil fuel combustion (gray
shading) show a steady increase, the increase of CO2 in the atmosphere (light blue
shading) through this period has been highly variable. This variability is mainly due
to changes in the magnitude of the terrestrial biosphere sink (green shading). The
high variability can be largely attributed to the interannual variability of climate and
demonstrates the dynamic role of terrestrial ecosystems in the global carbon cycle.
The magnitude of this sink is essentially the integral over the net carbon fluxes of
all terrestrial ecosystems, with each ecosystem responding individually to the local
climatic conditions. Detailed knowledge of the carbon fluxes between the terrestrial
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biosphere

Figure 1.2: Sources and sinks of atmospheric CO2 from 1959 to 2006. Top: The
sources of CO2 emissions as the sum of fossil fuel combustion, land-use change, and
other emissions. Bottom: The sinks of CO2 in the biosphere and in the ocean and
the net overall increase in CO2 concentration in the atmosphere. Figure taken from
Canadell et al. (2007).

ecosystems and the atmosphere is thus fundamental for understanding the global
carbon cycle and predicting the effects of climate change.

1.2 Data domain

1.2.1 Terrestrial carbon flux measurements

With the development of the eddy covariance technique, carbon, water, and energy
fluxes between the terrestrial ecosystems and the atmosphere can be directly mea-
sured at the ecosystem level (Baldocchi, 2008). Eddies are the turbulent motions of
upward and downward moving air which transport gases such as CO2. These turbu-
lent motions and the concentration of the gases within are sampled with a three-axis
sonic anemometer and a gas analyzer. The vertical flux of CO2 can be calculated
from the covariance between the fluctuations of the vertical motion and the CO2 con-
centrations. The measurements are taken with a frequency on the order of 10 Hz.
To calculate mean flux densities (typically averaged over half-hourly or hourly time
spans), several data treatment steps are required (Aubinet et al., 2003).

The eddy covariance instruments are installed at flux towers above the ecosystem
canopy (see Figure 1.3). The source area of this flux, the footprint, has typical longi-
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P
hotosynthesis

R
espiration Flux

tower

Figure 1.3: Sketch of flux tower measurements over a terrestrial ecosystem.

tudinal length scales of 100 m to 2000 m (Schmid, 1994). The carbon flux measured
is the net ecosystem productivity NEP , which is the photosynthetic uptake minus
the release by respiration. In contrast to controlled lab experiments, the ecosystem
response is driven by external weather conditions. To capture the climatic conditions,
there are concurrent measurements of a wide range of variables, such as radiation,
temperature and humidity.

Continuous routine applications of this meteorological technique became available
since the early 1990s and eddy flux towers have now been established to monitor
the CO2 fluxes over a wide range of vegetation types and climate zones all over the
world (Baldocchi, 2008). The carbon fluxes and the auxiliary meteorological data
are usually recorded throughout the whole year with a high temporal resolution of
half-hourly or hourly intervals.

1.2.2 Description of the Hainich forest tower site

One particular site with eddy flux measurements is the Hainich forest in Germany
(Knohl et al., 2003). The Hainich tower, see photograph in Figure 1.4, is located at 51◦
04’ 46” N, 10◦27’ 08” E, and 440 m above sea level in one of the largest beech forests
of Central Europe. Due to its history as a military base, the forest has been taken
out of management for more than 70 years. In the centuries before, the Hainich forest
was managed by the local village population in a sustainable coppice-with-standards
method. Therefore, this forest developed basically undisturbed with trees covering a
wide range of age classes up to 250 years. The forest is dominated by beech (Fagus
sylvatica, 65%), ash (Fraxinus excelsior, 25%), and maple (Acer pseudoplantanus and
Acer plantanoides, 7%). The forest floor is completely covered with understory veg-
etation (Allium ursinum, Mercurialis perennis, Anemone nemorosa). Details on the
stand characteristics in the main footprint area of the tower are given in Table 1.1.

The typical phenology of the Hainich forest is: active understory vegetation from
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Figure 1.4: Photo of the flux tower at Hainich forest.

April to October, leafed trees from May to October, and a dormant season from
November to March (with only sporadic snow cover). The climate is temperate sub-
oceanic/subcontinental with long term annual means of 7.5◦C - 8◦C air temperature
and 750 - 800 mm precipitation. The prevailing wind direction at the site is from the
south-west.

1.2.3 Properties of the eddy flux measurements

Due to limitations of the eddy covariance technique and ecosystem measurements in
general, the obtained datasets are subject to many sources of uncertainty:

Fragmentation: Instrumentation failure, stationarity test, spike filtering, footprint
issues, horizontal advection flow, and other quality criteria and checks might
lead to a rejection of the measurement (Goeckede et al., 2004; Papale et al.,
2006). The main limitation of the eddy covariance technique is the requirement
for turbulent atmospheric conditions. During the daytime, positive sensible
heat fluxes create buoyancy that helps to mix the atmosphere. At nighttime,
however, radiative cooling leads to stable conditions that suppress turbulent
mixing. Overall, the annual datasets are highly fragmented with 20% to 60%
gaps in the data (Moffat et al., 2007). The majority of these gaps occur during
nighttime.

Random error: The main sources of uncertainty are the noise in the measurement
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Parameter Value
Stand density 334 trees/ha
Basal area 34.2 m2/ha
Mean diameter at breast height 0.308 m
Mean tree height 23.1 m
Maximum tree height 37 m
Living tree biomass 21 270 g C/m2

Carbon in organic layer 295 ± 26 g C/m2

Carbon in mineral soil (0-50 cm depth) 12 220 g C/m2

Dead wood 928 g C/m2

Maximum LAI of canopy (2004) 5.5 m2/m2

Aboveground tree litter production (2004) 300 ± 52 g C/m2

Table 1.1: General stand characteristics of the main footprint area of the Hainich
forest tower site in Thuringia, Germany. Table taken from Kutsch et al. (2008).

from the instruments as well as the turbulent transport. This random error has
been assessed by Hollinger & Richardson (2005) by comparing carbon flux mea-
surements from two towers with the same footprint; It scales with the magnitude
of the flux and can be of the same order of magnitude as the measurements,
especially during nighttime.

Multidimensionality: Since the ecosystem is driven by external weather condi-
tions, the flux measurements are taken together with a wide range of auxiliary
meteorological data, such as radiation, temperature, and humidity. Each of
these measurements has its own intrinsic measurement noise or even gaps. The
highly multidimensional datasets are complex with hidden non-trivial causali-
ties due to cross-correlations, confounding effects, and time lags (memory) of
the ecosystem response.

Inconsistency: Even under the same meteorological conditions, the measured net
carbon flux might be different due to changes in the state of the ecosystem,
such as the phenology, soil properties, time lag effects, changes in the footprint,
or missing additional meteorological drivers.

Abundance: The high temporal resolution leads to frequent recurrences in the
dataset with the response mainly driven by the daily cycle. The underlying
longer term changes only cause small effects. Because of this abundance, mea-
surement gaps even of several days can be reconstructed without causing much
additional uncertainty in the (gap-filled) annual sums, unless the ecosystem is in
a period of active change such as springtime for a deciduous forest (Richardson
& Hollinger, 2007).

Overall, the carbon flux datasets are so large, complex, and multi-dimensional
that the causalities cannot be derived by visual inspection.
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Figure 1.5: Conceptual flow of the two modeling approaches. (The shaded areas
depict the special features of the inductive methodology presented here to characterize
the ecosystem datasets.)

1.3 Methodological concept

1.3.1 Data problem class

Since the ecosystem is in a natural state (with history) driven by external weather
conditions, the observed ecosystem response is highly complex with many coexisting
and coupled causes and effects. Even high-resolution multi-dimensional measurements
restrict the observer to snap-shots of certain aspects of the ecosystem response. The
obtained ecosystem datasets usually exhibit the following properties:

• Fragmentary,

• Noisy,

• Multi-dimensional,

• Inconsistent,

• Abundant.

Eddy covariance measurements are a typical instance of these kinds of observational
datasets. To interpret ecosystem datasets and understand the underlying causalities,
a mapping of the ecosystem’s behavior into mathematical models becomes necessary.
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Figure 1.6: Mathematical model types for representing the ecosystem response.

1.3.2 Inductive modeling approach

In general, two basic modeling approaches can be distinguished: the hypothetic-
deductive and the inductive (Hempel & Oppenheim, 1948; Young & Jarvis, 2002).

The hypothetic-deductive approach (Figure 1.5, top) begins with hypotheses about
how the controls in the ecosystem work. The controlling processes are then imple-
mented in an ecosystem model as parameterized equations (deduction). The obser-
vational datasets are used to constrain the parameters and to test the validity of
the model. A good agreement of the model’s predictions with the measurements is
assumed to corroborate the hypotheses.

The methodology presented here is an inductive approach (Figure 1.5, bottom)
where a priori assumptions are avoided as much as possible. It is based on artificial
neural networks (ANNs), a purely empirical model with a very general function class.
The characterization of the ecosystem response to its climatic drivers is inferred solely
and directly from the observations. Only at the last step of the inductive approach
are the results put in the context of current hypotheses.

The inductive, data-derived modeling approach is usually diagnostic, i.e. the mod-
eled response is an instantaneous response to the input forcing, see Figure 1.6. In
contrast, hypothetic-deductive models can range from simple diagnostic to highly
complex prognostic models. The latter are conceptional descriptions of the biological
and physical processes also accounting for the ecosystem state, i.e. the memory of the
natural system. In this thesis, synthetic data from two types of hypothetic-deductive
models will also be considered: simple non-linear regressions (NLRs) and prognostic
terrestrial biosphere models (TBMs).

1.3.3 Characterization with artificial neural networks

The strength of ANNs as the underlying inductive framework is their ability to recog-
nize correlations between the drivers and the ecosystem response even in the highly
complex and noisy observational datasets described above. The ANN model trained

8
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Figure 1.7: Schematic of an ANN model trained on eddy flux measurements with
the three climatic drivers radiation, humidity, and temperature.

on ecosystem data represents the instantaneous ecosystem response to the climatic
controls as sketched for eddy flux measurements in Figure 1.7.

ANNs are usually used for spatial or temporal interpolation in a “black box mode”,
i.e. without further examination of the mapped correlations. The work presented
here explores the capability of ANNs to be used in an inductive manner as a “glass
box”. By analyzing the purely empirical relationships mapped by the ANN models
from the data, the ecosystem response to its climatic drivers can be characterized.
The characterization ranges from benchmarking the total explainable variability and
identifying the hierarchy of the controls to extracting the multivariate dependencies
and sensitivities (see also the shaded areas in Figure 1.5, bottom).

1.3.4 Basic principle

The methodology follows an inductive modeling approach: very general models are
generated and then systematically specialized on (subsets of) the ecosystem data in
such a way that the specialized models can be interpreted ecophysiologically. The
general model class is based on ANNs, specifically implemented to support a wide
range of mathematical characterizations of the underlying correlations. The different
phases of the methodology describe a framework to extract the underlying functional
relationships with a minimum of prior information. This permits a characterization
of the ecosystem response to its climatic drivers directly from data.

The context of the methodology is illustrated in Figure 1.8, sketching the ob-
servation and model simulation streams at the process and ecosystem levels: The
ecosystem measurements can be seen as point observations of the ecosystem response
to the climatic drivers depending on the history and state of the ecosystem. The
modeled ecosystem response is the result of interactions of various implemented pro-
cesses to the climatic drivers in dependence on the initial conditioning and modeled
states.

9



CHAPTER 1. INTRODUCTION

Complex natural system

IMD

OBSERVATIONS

Hypothetic-deductive 
implemementation of ecosystem 

processes and states

MODEL SIMULATIONS

Modeled ecosystem response

Climatic driversClimatic drivers

CER
TSH
ACE
EEM ACE

EEM

(ACE)
EEM

Ecosystem  measurements

Gap-filled dataset

New!Model evaluationCharacterizationResponse

Pr
oc

es
s 

le
ve

l  
   

   
   

   
   

   
  E

co
sy

st
em

 le
ve

l

Figure 1.8: Observation and model simulation streams at the process and ecosys-
tem levels. (Noted in gray italics are the corresponding areas of application of the
methodology.)

The standard use of the observations and model simulations is forward (thick black
arrows). In contrast, the presented methodology allows a new inverse characterization
of the observed as well as the modeled ecosystem response to its climatic controls (thin
dotted arrows). Model evaluation is usually performed at the process level or at the
ecosystem level (white double arrows). The inverse characterization also provides a
new model evaluation scheme (red double arrow): a link between the observations
and their representation in the modeling world.

With the inverse characterization of the observational or synthetic data, the
methodology opens a whole suite of novel ecophysiological applications:

1. Characterizing ecosystem responses (CER);

2. Testing specific hypothesis (TSH);

3. Assessing competing semi-empirical equations (ACE);

4. Evaluating ecosystem models (EEM); and

5. As a by-product: interpolating missing data (IMD).

Each of the five areas of application follows the phases of the methodology. The
wide range of applications will be elaborated on the same ecosystem dataset through-
out this work: the carbon flux measurements from the Hainich forest.
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1.4 Outline of the thesis
The methodology presented in this thesis aims to provide a generally applicable sys-
tematic approach to extract the causalities hidden in ecosystem datasets with as little
prior information as possible.

The manuscript is divided into three parts. Part I of the thesis describes the
inductive methodology itself: the modeling framework (Chapter 2), the techniques
employed to analyze the datasets (Chapter 3), and the seven phases of the method-
ology (Chapter 4).

Part II aims to demonstrate that the methodology is generally applicable to ecosys-
tem datasets which exhibit the properties described above and, in particular, that the
methodology is well-suited to investigate a wide range of different ecophysiological
aspects in these datasets. The methodology will be elaborated on and its ecophysio-
logical relevance examined for five different queries to cover each area of application:
the daytime CO2 response during the active season is used as the example for char-
acterizing ecosystem responses (Chapter 5); the net effect of diffuse light is tested
as a specific hypothesis (Chapter 6); seven competing equations are assessed in their
performance as light response curves (Chapter 7); evaluating ecosystem models is
examined for two terrestrial biosphere models (Chapter 8); and missing data in the
dataset is interpolated, the so called gap-filling (Chapter 9).

In the final part, Part III, the results of the application examples are summarized
with regard to the reliability of the modeling results (Chapter 10), followed by general
conclusions and outlook (Chapter 11). Details on the technical implementation are
presented in the appendix (Appendix A).
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Chapter 2

Modeling framework

An inductive approach requires a purely empirical modeling framework. Purely em-
pirical models are broadly used, e.g. for the spatial or temporal interpolation of the
carbon fluxes (Gove & Hollinger, 2006; Papale & Valentini, 2003; Stauch & Jarvis,
2006), but mostly in a black box mode. Only a few of them are employed in an induc-
tive manner also aiming to provide a physiological interpretation, such as data-based
mechanistic modeling by Young & Jarvis (2002).

The purely empirical model used here is based on statistical multivariate model-
ing with artificial neural networks (Bishop, 1995; Rojas, 1996). An ANN consists of
an interconnected group of artificial neurons, also called nodes, which can be trained
to learn the correlations present in the dataset. The methodology exploits their
outstanding data-mining ability, i.e. their ability to recognize the underlying pat-
terns even in large sets of (noisy) observational datasets. ANNs have been shown to
outperform classical semi-empirical methods (e.g. Abramowitz, 2005; Moffat et al.,
2007) and can thus be used as a benchmark for process-based model descriptions
(Abramowitz, 2005).

This chapter describes the modeling framework: how the very general models are
generated and how the correlations of the target variable (response) with the control-
ling input variables (drivers) are learned. The type of ANNs used here are feedforward
ANNs (Section 2.1). The learning is based on the backpropagation (BP) algorithm
(Section 2.2). In this algorithm the partial derivative of the error is backpropagated
through the network. The same principle can be used to also calculate the partial
derivative of the network function (Section 2.3). The nodes have a logistic activa-
tion function and optimal learning requires scaling of the training data (Section 2.4).
The actual learning of the network, the training process, follows a complex procedure
including pruning of the nodes and smoothing towards the minimum error (Section
2.5).

13
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2.1 Feedforward artificial neural networks

A feedforward ANN consists of nodes interconnected by weights only in a directed
forward way. Information thus moves from the input node layer forward through the
hidden node layer(s) to the output node layer. This type of ANN provides the features
required by this inductive approach: a very general function class with a closed-form
expression of the network, trained by a supervised learning algorithm that is suited
to non-linear regression tasks. Cybenko (1989) proved that a single hidden layer,
feedforward ANN is capable of approximating any continuous, multivariate function
to any desired degree of precision. This means that a complex enough feedforward
ANN has the built-in flexibility to map the individual conditions without needing
prior assumptions about the shape of the response.

2.2 Backpropagation algorithm

The backpropagation algorithm is a widely employed method for supervised learning
of feedforward ANNs (Rojas, 1996; Rumelhart et al., 1986). A supervised learn-
ing process requires essentially the same three choices as other model-data synthesis
processes (after Raupach et al., 2005):

1. A sufficient model with adjustable properties,

2. A measure of the distance between data and model, also called the cost or error
function, and

3. A search strategy for finding an optimum of the cost function.

2.2.1 Network topology

An ANNmodel can be described by its network topology and represented in a diagram
as shown in Figure 2.1. The number of input and output nodes of the feedforward
ANN are set up according to the dimensions of the data used for training. The
number of hidden layers and the number of nodes within each hidden layer can vary
from one up. The weights determine the behavior of the network and are the model
properties to be adjusted during training. The extra weight of each node connected
to a constant, here 1, is the bias of the node.

For the model to be sufficient, it has to have enough degree of freedom to be able
to learn the training tasks. The degree of freedom of an ANN depends on the number
of weights and can be changed by adding or pruning nodes or hidden layers.

Adding or pruning a hidden layer affects all weights to the layer above and below
and results in an erratic change in the behavior of the ANN model, whereas adding
or pruning of single nodes shows more gradual effects. Furthermore, going from a one
layer to a two-layer network greatly increases the degree of freedom of the network,
the training process takes a lot more computing time, and the pruning of the nodes is
less efficient. Since Cybenko (1989) showed that one hidden layer is sufficient, a single
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Figure 2.1: Example of a feedforward ANN with two input nodes plus the bias node,
three nodes in the single hidden layer, and one output node.

hidden layer network with a large enough number of nodes1 was used as the initial
network topology throughout this work. For the presented application examples, the
number of initial hidden nodes (before pruning) was in the range of six to ten.

2.2.2 The error function

In the case of the backpropagation algorithm, the error function E to be optimized
is the Euclidean distance. For a single output node, the equation is:

E(W) =
1

2

N∑
i=1

(mi − ti)2 , (2.1)

where ti are the individual (observed) target values, mi are the values modeled by
the ANN, and N is the total number of data tuples in the training dataset. W is
the weight matrix and its elements wk,l denote the connection weight between node
k and node l.

The gradient descent optimization is used as the search strategy to minimize the
error function, i.e. as the training algorithm for the adjustable network weights. The
derivative of the error function is propagated back through the network following the
steepest descent with respect to the weights. Each weight wk,l is updated using an
increment:

∆wk,l = −γ ∂E

∂wk,l

, (2.2)

where γ is the learning rate. The weight update ∆wk,l is also called the delta rule. The
learning rate γ is a positive proportionality parameter which defines the step length

1If the function approximation did not improve further by adding more nodes, the number of
hidden nodes was regarded as large enough.
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of each iteration in the negative gradient direction. The combination of weights which
minimizes the error function is considered to be a solution of the learning problem.

2.2.3 Online and epoch mode

The backpropagation training algorithm can be executed in two modes:

3a. Online: the data tuples arrive in sequence and are processed one by one, also
called sequential or stochastic mode;

3b. Epoch: the data tuples are processed all at once, also called offline, non-
sequential, or batch mode.

In the online case, the weights are updated after each data tuple presentation and
so the weight updates do not follow the true gradient exactly. However, if the data
tuples of the training dataset are randomly presented, the network learning oscillates
around the true gradient direction. Online training is more efficient when the number
of data tuples is large. Therefore, the training algorithm is usually executed in online
mode on the eddy flux datasets.

An epoch is one round of all data tuples presented to the network. The sum
of the gradients over all data tuples of the training dataset is used to update the
weights, following the true gradient. This mode is used to finalize the training process
smoothly.

2.2.4 Momentum term

To avoid convergence problems of this algorithm in “steep gullies” or on “flat plateaus”
of the error function, a momentum term is added to provide the search process with
a kind of inertia:

∆wk,l = −γ ∂E

∂wk,l

+ η∆−1wk,l, (2.3)

where η is the empirical momentum term and ∆−1wk,l the weight update value of the
previous step.

2.2.5 Regularization term

If the trained ANN models tend to overfit fine details of the training data, the im-
plementation of a weight regularization algorithm can be beneficial (MacKay, 2003).
The error function E in Equation 2.1 is extended by a term that penalizes large
weights:

E ′(W) =
1

2

N∑
i=1

(mi − ti)2 + α · 1

2

L∑
k=1

L∑
l=1

w2
k,l, (2.4)

where L is the total number of nodes in the network and α is a positive regularization
constant, also called the weight decay rate.
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Figure 2.2: Backpropagation diagram for the feedforward step (top) and backprop-
agation step (bottom) after Rojas (1996).

The new delta rule for the weight update is:

∆wk,l = −γ(
∂E

∂wk,l

+ αwk,l). (2.5)

The weight update for combined regularization (Equation 2.5) and momentum
(Equation 2.2) is:

∆wk,l = −γ(
∂E

∂wk,l

+ αwk,l) + η∆−1wk,l. (2.6)

2.3 Partial derivative propagation
In the backpropagation algorithm, the partial derivatives of the error function towards
the weights are propagated backwards through the network. This algorithm can be
extended to also compute the partial derivatives of the network function. This exten-
sion can best be explained using a backpropagation diagram, a graphical approach
after Rojas (1996). The BP diagram in Figure 2.2 shows the basic principle:

Each node consists of a left and right side. At the right side (gray), the node func-
tion is calculated, whereas the left side (white) stores the derivative of this function.
In the feedforward step (top), the input value x is propagated through to the right
side of the network diagram to compose the network function. In the backpropagation
step (bottom), the derivatives are propagated through to the left side and the chain
rule of the composite function is implemented.

In classical backpropagation, the inputs are treated as constants and the par-
tial derivative of the error function with respects to each weight is propagated back
through the network, see Figure 2.3, top. The derivative propagation of the network
output function follows the same principle, only reversed with respect to inputs and
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Figure 2.3: Error function composition and backpropagation (top), and network
output function composition and backpropagation (bottom).

weights. This time the weights are treated as constant and the partial derivative of
the network output function with respect to each input is propagated back through
the network, see Figure 2.3, bottom. The numerical partial derivatives are calculated
for each data tuple.

The derivative propagation of the network output function was implemented by
extending the nodes to also store the derivative of the node function. The backpropa-
gation of the delta rule and the node derivatives are carried out simultaneously. This
extension of the classical backpropagation algorithm can be generally incorporated
into feedforward networks.

2.4 Node properties

2.4.1 Activation function

The nodes’ output function is called the activation function. For the computation
of the gradient, this activation function has to be continuous and differentiable. A
popular non-linear activation function for backpropagation networks is the logistic
sigmoid s(x) :

s(x) =
1

1 + e−x
. (2.7)

For high negative values, s(x) is zero (deactivated), see Figure 2.4. With increasing
positive signal strength from the incoming nodes, s(x) of each node can be activated
during training. In the learning process, the individual nodes are activated or deacti-
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Figure 2.4: Graph of the logistic sigmoid activation function. (Highlighted in red
the nearly linear range of the slope.)

vated through the adjustment of weights connecting the nodes. The derivative of the
logistic sigmoid is very simple and efficient to compute, because it can be expressed
as a polynomial of itself:

ds(x)

dx
= s(x) (1− s(x)) . (2.8)

2.4.2 Scaling of the training pattern

The set of all tuples of input and target data used to train or run an ANN is called a
pattern. To ensure an optimum training procedure of an ANN, the input and target
values of a pattern need to be scaled to the operative range of the nodes’ activation
functions.

The inputs were scaled to [-1,1]. This range is within the nearly linear range of
the logistic sigmoid and well outside the saturated areas of s(x), see Figure 2.4. The
different input values are thus weighted evenly.

For the scaling of the target values, the activation function of the output nodes
has to be considered. For the logistic sigmoid, the targets are usually scaled to [0,1],
the full output range (Lek & Guégan, 2000). This means that the saturated regions of
the function would have to be activated to output values close to the lower or upper
limit and that 0 or 1 are only reached at −∞ or +∞, respectively (see also Looney,
1997). The effect on the training is shown for the example of the cubic function in
2.5, left. The scaling of the targets with the full range leads to a large distortion of
the derivative at the edges, where s(x) is saturated.

The best results were obtained, when the scaling was limited to the nearly linear
range of the output of the sigmoid activation of [0.3,0.7]. Now the target values
are weighted evenly and the edge effect is only small, see Figure 2.5, middle. A
similar improvement can be reached using a piecewise linear function as the activation
function of the output node, see Figure 2.5, right.

The scaling effect only became apparent when looking at the derivatives. The
common [0,1]-scaling seems sufficient if the ANN models are used only for function
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Figure 2.5: Modeled cubic function f(x) = x3 (top) and derivative (bottom) for
three different setups of activation functions of the output node and/or scaling range
of the training pattern, as depicted in the small sketch. (The plot title contains the
plot description, the pattern-specific ID, the version number of the training setup,
the processing routine, and the training permutation, see Appendix A for further
explanations.)

approximation. The error of the trained ANN, thus the mismatch between the ANN
output and target values, was small for all three setups in the presented example.
However, this modeling framework is also used to look at the network function and
its partial derivatives. Therefore, the fine-tuning step of scaling the target pattern to
a restricted range of [0.3,0.7] is critical, especially since the mapped relationships are
also interpreted for their ecophysiological properties.

2.4.3 Goodness factor

The goodness factor Gj describes the total signal propagated forward by the jth node
(Murase et al., 1991):

Gj =
N∑
i=1

Oj∑
o=1

(wj,o oj,i)
2 , (2.9)

where N is the total number of data tuples in the training pattern, oj,i is the value of
the output function for each data tuple i, and Oj is the number of outgoing (forward)
weights wj,o of the jth node. This squared sum over all signals that the other nodes
receive from node j gives a measures of the activation of node j and can be used as
diagnostic tools for network pruning.
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2.5 Training process
After setting up a feedforward network and scaling of the training pattern, the actual
training process is started. One round of presenting and learning of all training data
tuples is called an iteration. After each iteration, several error measures, such as
correlation coefficient R2 , the root mean square error RMSE , and the bias error
Bias , are calculated. (More details on the error measures can be found in Section
3.1.)

The ANN training process goes through several phases:

1. First, a Monte Carlo technique is used, where repeatedly networks with a ran-
domly assigned initial weight configurations are generated. The configuration
with the lowest RMSE and highest R2 is used as the starting weight configu-
ration.

2. Then the ANN is trained with the backpropagation algorithm in online mode
with a high learning rate.

3. As soon as the RMSE training error levels off and improves less than a certain
threshold (usually 1%), the training process is stopped (early stopping).

4. Next the pruning process is started: The node of a hidden layer with the lowest
goodness factor (Section 2.4.3) is pruned, if its activation is a certain factor lower
than of the node with the highest goodness factor. The training is continued
with a low learning rate, until the RMSE levels off again. If the node was
of little significance, the pruned network is likely to still be close to the last
minimum and the training error should reach the same low error level as before.
The pruning step is repeated, as long as there are nodes with a low enough
activation to be pruned and as long as the RMSE recovers. If the training of
the pruned network levels off to a higher error, thus a decreased performance,
the last pruning step is undone.

5. The ANN training is finalized with epoch mode iterations. Since the epoch mode
iterations follow the true gradient, the training progression is very smooth and
settles towards the closest local optimum. This smoothing procedure turned
out to be necessary to minimize the bias error.

6. The feedforward ANN is now fully parameterized and can be used to perform
the data analysis. The trained ANN with fixed weights will be referred to as
the ANN model.

Figure 2.6 shows a typical example of a training progression: First, a good initial
weight configuration was located with a Monte Carlo technique. Then the ANN was
trained in online mode. Once the RMSE leveled off, the pruning of the six nodes in
the hidden layer started. The last pruning from 4 to 3 nodes resulted in a slightly
higher error (not visible on the graph), and therefore the network with four nodes was
reloaded. The ANN training was finalized in epoch mode. The example is actually
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Figure 2.6: Typical example for an ANN training progression.

the training progression of an ANN model used in Section 5.5.2 with the final network
structure provided in Figure 5.13.

In the training process, the starting weights are randomly assigned and the order
of the data tuples learned are randomly shuffled within each iteration. Therefore
each ANN training, even on the same dataset, has a different training progression
and thus yields a differently trained ANN model with a different final node and
weight configuration. However, the ANN models trained on the same dataset should
optimally yield a similar performance and function approximation. To get a measure
of the robustness of the trained ANN models, the training process was repeated ten
times throughout this work.

The presented modeling framework provides a general basis to generate and train
a purely empirical model, the prerequisite of an inductive methodology. The reliabil-
ity of the framework, such as the generalization beyond the training dataset or the
robustness of the training permutations, is discussed later in Chapter 10 with refer-
ence to the modeling results presented in Part II of the thesis. How this inductive
modeling framework can be used to analyze ecosystem datasets, is the subject of the
next chapter.
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Chapter 3

Data analysis toolbox

The modeling framework introduced in the last chapter can now be employed to
train feedforward ANNs on ecosystem datasets. Since the dataset is presented as
snapshots, one tuple at a time, the purely empirical models pick up correlations
at the presented time scale. After successful training, the ANN model maps the
underlying correlations of the responding output variable to the controlling input
variables (drivers). The properties of the modeled response are then used to identify
the mathematical characteristics of the dataset it was trained on. In the following,
several tools to analyze the data are described:

The mapping performance gives a measure of how much of the response can be
explained with the provided input drivers (Section 3.1). If used on driver subsets,
the mapping performance can also be used to identify the relevance of the drivers
(Section 3.2). The analytical network function describes the functional relationship
of the response to the drivers (Section 3.3), while its (numerical) partial derivatives
characterize the response to changes in the drivers (Section 3.4).
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3.1 Mapping performance measures
The quality, or performance, of the ANN model can be used to estimate how much
of the response can be mapped (explained) with the input drivers provided. There
are several performance measures of interest:

During the ANN training, the Euclidean distance E is optimized (see also Section
2.2). E is equal to twice the sum of squared errors (SSEerr) and twice the squared
root mean square error (RMSE 2 ):

E =
1

2

N∑
i=1

(mi − ti)2 = 2 · SSEerr = 2 · RMSE 2, (3.1)

where ti are the individual (observed) target values, mi are the values modeled by
the ANN, and N is the total number of data tuples.

The coefficient of determination (nlR2 ) is directly related to SSEerr normalized
by the total variance SSEtot of the dataset:

nlR2 = 1− SSEerr

SSEtot

= 1−
∑

(mi − ti)2∑
(ti − t)2

, (3.2)

where t is the mean of the (observed) target values. Since nlR2 is directly related to
SSEerr , and RMSE respectively, and since SSEtot is constant for the same dataset,
nlR2 provides a universal measure of the correlation as well as the model error.

Assuming a linear relationship between the modeled and (observed) target data,
this coefficient of determination can be expressed as the squared correlation coefficient
(R2 ):

R2 =
{
∑

(mi −m)(ti − t)}2∑
(mi −m)2

∑
(ti − t)2

, (3.3)

where m is the mean of the (observed) target values. nlR2 is a measure of the unex-
plained variance and can range from [-∞,1], whereas R2 describes purely the correla-
tion between two variables and has a fixed range of [0,1]. Since the SSEerr is optimized
during the ANN training, these two measures are the same for the data tuples of the
training pattern and therefore only R2 is stated throughout this manuscript. How-
ever, if the analysis is performed on a different pattern than the training pattern or
a subset, nlR2 and R2 might differ.

If the data follows a Laplace rather than a Gaussian distribution, not the RMSE
but the standard deviation SDev should be used as a measure of the model residuals
(Richardson et al., 2006; Lasslop et al., 2008):

SDev =
√

2 ·MAE =
√

2 · 1

N

∑
|mi − ti|, (3.4)

where MAE it the mean absolute error.
For ANN models that will be used for predictions, the mean bias error (Bias)

should also be considered (Moffat et al., 2007):

Bias =
1

N

∑
(mi − ti) . (3.5)
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As a convention for this manuscript: If the ANN model has high correlation
measures (nlR2 and R2 close to 1) and low errors (e.g. RMSE , SDev , or Bias close
to zero), its mapping performance P will be referred to as high. Accordingly, a
performance improvement implies increased correlation and decreased errors.

3.2 Driver relevance
The mapping performance Pi of an ANN model with a single input driver di measures
how much of the response can be mapped by di. This can be used to determine the
relevance of the drivers:

If a driver variable d1 has more direct correlation with the responding output
variable than another driver variable d2 , the mapping performance P1 of the ANN
model with single d1 will be higher than the mapping performance P2 of the ANN
model with single d2 :

P1 > P2. (3.6)

The ANN mapping performance with single inputs can thus be used to quantify their
importance as primary input drivers.

3.2.1 Added performance

In the same manner, the improvement in ANN performance with a new driver added
to an existing network can be used as a measure of importance as an additional
driver. The more new information the additional driver dA adds, the greater is
the improvement in the network performance, and the more relevant is this climatic
variable dA for the response (van de Laar et al., 1999). The performance improvement
∆PA can be calculated as:

∆PA = P+A − P, (3.7)

where P is the performance without dA, and P+A is the performance with dA added.
When using the performance improvement as a measure of relevance, attention

has to be paid to correlations between the input drivers. If a new driver adds little
information to the system, it might mean that it is not relevant but it could also
mean that the information is already present in the existing inputs. This fact can be
used to detect correlations by first training the networks separately on two drivers
of interest, and then together. Assuming that the two drivers showed high relevance
when trained separately but only little added performance when both were used for
the training, it means that the two are closely (cor-)related.

3.2.2 Greedy search algorithm

The added driver relevance can be employed in a search algorithm to determine the
ranking of the drivers. A greedy search algorithm tries to reach the global optimum
by keeping the local optimum fixed at each stage:

In the first step, the primary drivers of the response are identified by presenting
ANNs with a single input variable at a time. The input variable yielding the highest
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ANN performance is the dominant driver of the response. In the second step, the
ANNs are trained with the most relevant primary driver and one additional input
variable at a time to determine the secondary drivers. The improvement in network
performance is used to quantify the relevance of each added input variable. In a
third step, the most relevant primary and secondary drivers are fixed to find the most
relevant tertiary driver, and so on.

3.3 Network function
The ANN model maps the response of the dependent output variable(s) to the input
drivers as present in the data. In a feedforward network, the input drivers d1 to
dn are mapped unidirectionally from layer to layer onto the predicted output. This
yields a unique, continuous analytical network function f describing the response:

f(d1, ..., dn), where f : D → R and D ⊂ Rn. (3.8)

If the input drivers are mapped onto multiple outputs m, then f is a vector of Rm,
where each component represents a closed-form expression of the input dimension.

3.4 Numerical partial derivatives
The numerical partial derivative PaD of f with respect to each input driver di char-
acterizes the change in the system response for each individual dataset tuple tj :

PaDi,j =

(
∂f

∂di

)∣∣∣∣
tj

. (3.9)

The idea to also analyze the numerical partial derivatives was originally motivated
by a comparison of techniques to determine the driver relevance by Gevrey et al.
(2003). In this comparison, a method based on the sum of squared partial derivatives
by Dimopoulos et al. (1999) was found to be the most useful.1 In the work presented
here, the sum of (un-squared) partial derivatives is used to look at the sensitivities of
the response with respect to the drivers, as described below.

3.4.1 Dynamic range normalization

The numerical partial derivative PaDi ,j describes the change of the response per
measured physical unit. To be able to compare the partial derivates among drivers
with different physical units or with different ranges, the numerical partial derivatives
of each input driver di are linearly transformed from the dynamic range to unit range:

[di,min, di,max] 7−→ [0, 1] , (3.10)
1Both papers compared the various ANN approaches also to multiple linear regression (classically

used for ecological data) and found that the ANNs yield better results due to their capacity to take
into account non-linear relationships.
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Figure 3.1: Sketch to illustrate the effect of dynamic range normalization.

where di,min is the driver minimum and di,max the driver maximum the ecosystem is
exposed to. As estimates of di,min and di,max, the overall minimum and maximum of
di in the annual dataset(s) is taken.

The normalized numerical partial derivative is calculated as:

nor.PaDi,j = (di,max − di,min) · PaDi,j, (3.11)

which has the same scale for each of the drivers, namely units of system response per
unit-normalized dynamic range.

A simple sketch to illustrate the normalization is given in Figure 3.1. The deriva-
tive (slope) of the response per physical unit to driver 1 is about five times higher
than to driver 2 (top). Typical input drivers with similar proportions in the dynamic
range are air and soil temperature. After normalization of the dynamic range to 1
(bottom), the change (slope) of the response with the respect to the two drivers is
the same for this simple example of two linear dependencies.
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3.4.2 Mean derivatives

To get an estimate of the mean absolute change of the response, the absolute numerical
partial derivatives for an input variable di are averaged over all N tuples tj :

abs.PaDi =
1

N

N∑
j=1

|nor.PaDi,j| . (3.12)

The positive and negative fractions of this sum provide information on negative
and positive changes in the response:

neg.PaDi =
1

N

∑
PaDi,j<0

(nor.PaDi,j) and (3.13)

pos.PaDi =
1

N

∑
PaDi,j>0

(nor.PaDi,j) . (3.14)

This chapter described several tools to analyze the mathematical properties of
the modeled response: the mapping performance, the driver relevance, the network
function, and the partial derivatives. The different phases of the methodology pre-
sented in the following use the data analysis tools to characterize the ecophysiological
relationships present in the dataset.
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Chapter 4

Phases of the methodology

Phases of the Methodology

Specifying the Response Query

Generating Driver Candidates

Benchmarking with All Drivers

Identifying the Driver Hierarchy

Extracting the Functional Relationships

Analyzing the Sensitivities

Discussing the Induced Hypotheses

Figure 4.1: The seven phases of the methodology.

The methodology is a systematic approach based on seven phases. These phases
guide to characterize the ecosystem response directly from complex and even frag-
mented datasets with as few prior assumptions as possible. The goal is to specialize
the training of the purely empirical models (Chapter 2) on (subsets of) the dataset
and to use the data analysis tools (Chapter 3) on these specialized models in such a
way, that the modeled responses can be interpreted ecophysiologically.

The phases start with specifying the response query (Section 4.1) and generating
driver candidates (Section 4.2). The data analysis tools are then used for bench-
marking with all drivers (Section 4.3), identifying the driver hierarchy (Section 4.4),
extracting the functional relationships (Section 4.5), and analyzing the sensitivities
(Section 4.6) in the ecosystem dataset. As the last phase, the induced hypotheses are
discussed in their ecophysiological context (Section 4.7).
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4.1 Specifying the response query
Ecosystem datasets usually contain responding and driving variables. The response
query can only comprise aspects of the ecosystem response that have their cause and
effect hidden in the dataset and that can thus be extracted by the purely empirical
modeling framework.

In the case of carbon flux datasets, the observed net carbon flux is the ecosystem
response to its climatic drivers which are sampled by the auxiliary meteorological
data. Additionally, there might also be some slower varying, descriptive state vari-
ables, such as the phenology, which are not direct drivers but nonetheless have an
effect on the magnitude of the response. The analysis can be performed not only on
the time scale of the measurements but also on aggregated (e.g. monthly) data.

To ensure that the dataset is representative for the characterization of the queried
ecosystem response, the following pre-considerations should be taken into account:

Quality: Since an empirical model will map the functional relationships as present in
the datasets, it is important to use accurate measurements that have integrity.
The integrity of the dataset does not depend on the quantitative amount of data,
but on the enclosed information contained. Therefore, the training datasets
should only contain high quality data.

Timescale: The empirical model only maps the instantaneous response to the stim-
ulus at the presented timescale. The time frame of the query thus needs to
match the time scale of the dataset.

Data coverage: A purely empirical model can only properly map functional rela-
tionships within the scope of the training dataset. Interpolation between under-
represented regions or extrapolation might lead to physiologically implausible
mapping. Therefore, the measurements used for training should have good data
coverage over the full range of interest.

Reducing complexity: The more explicit the information in the dataset, the more
concise will be the mapped relationships. To reduce the complexity of the
modeled ecosystem response, only data relevant to the response query should
be considered. For example, if the interest is in the photosynthetic response
of the ecosystem, the dataset should be restricted to the daytime data of the
active period.

A dataset satisfying the four items above can then be used to train the purely
empirical models and extract the overall response in the dataset. To examine different
aspects of the queried response, the dataset can be further grouped (training and
analysis) or binned (analysis only) into subsets:

1. Data grouping: To investigate differences in the response, the representative
dataset can be grouped into subsets (e.g. each month). The ANN models are
trained separately for each subset, and the differences between them give insight
into the variability of the response. The setup of the grouping can be varied to
test for diurnal, seasonal, or interannual variability.

30



CHAPTER 4. PHASES OF THE METHODOLOGY

2. Data binning: To analyze certain aspects of the overall response, the repre-
sentative dataset can be binned to certain variable ranges (e.g. carbon flux
magnitudes). The ANN models are trained on the complete dataset, but the
data analysis is performed on the individual bins.

The interpretation of the modeled response of these data subsets may lead to even
further insight into the ecophysiological properties.

4.2 Generating driver candidates
The starting set of driver candidates should contain at least all driver variables that
are assumed to have an effect on the queried ecosystem response. This is not restricted
to the observable climatic drivers and should be extended to theoretical1 variables
that might add further relevant information. For example, the seasonal changes
of the ecosystem can be included with latent2 variables, such as the weekly mean
temperature, or a fuzzy set3 of variables for the course of the season (Papale &
Valentini, 2003). Other latent variables, such as the fraction of diffuse light, might
expose a different aspect of the response. Time lag effects can be included by providing
information about preceding events, such as previous productivity rates.

A comprehensive driver set provides a basis for multiple working hypotheses. The
starting set of input drivers may include all available meteorological variables plus
many theoretical drivers and the following phases can be used to determine whether
these drivers have an actual relevance for the response or not. However, it is crucial
not to miss relevant driver information, as this might distort the genuineness of the
results.

4.3 Benchmarking with all drivers
The ANN model trained with all generated driver candidates provides a performance
benchmark of the maximummapping between the responding variable and the drivers.
If the determination coefficient nlR2 is used as the performance measure (Section 3.1),
then the benchmark describes the total explainable variability in the dataset.

The unexplained variability can be due to not-included but relevant climatic con-
trols, due to missing information about the state of the system, such as the phenology,
and due to the noise in the measurement. Assuming an optimally trained ANN model
with all relevant climatic drivers and sufficient information about the state of the sys-
tem, the correlations of the drivers to the response at the chosen time scale will be
fully mapped. The SDev of the model residuals can then be used to give an esti-
mate of the uncertainty (random error) in the flux measurements (Richardson et al.,
2008). Another important application of the benchmark models is the interpolation
of missing data, the so called gap-filling.

1not directly observable
2inferred from observations
3set of variables with gradually varying membership (Zadeh, 1965)
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For little data and lots of input drivers, benchmarking with all drivers might lead
to overfitting. To avoid this effect, the benchmarking phase can be repeated after the
next phase of identifying the driver hierarchy using only the most relevant drivers.

4.4 Identifying the driver hierarchy
After determining the benchmark performance, subsets of the generated drivers are
used for the ANN training to determine the driver relevance (Section 3.2). The
ANNs trained with single input drivers at a time identify the relevance of the climatic
variables as primary drivers of the ecosystem response. The driver yielding the highest
performance of the modeled response will be called the dominant primary driver.

If the response is highly modulated by the dominant response (e.g. the response
of photosynthesis by light), it acts like a carrier signal for the minor responses (e.g.
temperature). In this case, the minor responses might be concealed and the network
might not be able to pick up the underlying minor correlation directly. To overcome
this problem the performance improvement ∆PA, when adding a driver to the network
mapping the dominant responses, is used as a measure of their relevance following a
greedy search algorithm. The second greedy search steps determines the most relevant
secondary driver, the third the most relevant tertiary driver.

The more greedy search steps, the larger the influence by cross-correlations among
the input drivers. Therefore the greedy search algorithm should be stopped as early
as possible. Usually three steps are enough to capture the concealed minor responses
and additional steps do thus not provide new information about the driver relevances.
The hierarchy of the remaining climatic drivers of the ecosystem response is obtained
by ranking their performance improvement at the last step.

Since the greedy search algorithm only follows a local search, it might not always
find the best subset. It is only sufficient if used in an ecophysiological context. For
example, the photosynthetic photon flux density is known to be the primary driver
of the carbon flux during daytime (see also results in Section 5.4).

4.5 Extracting the functional relationships
During the training, the very general initial ANN is constrained by the datasets.
Afterwards, the ANN network function f (Section 3.3) represents the ecosystem re-
sponse to its climatic controls as present in the data. This network function can be
used to characterize the physiological properties of the ecosystem:

1. Its form (e.g. the basic shape, the offsets at the origin, or the saturation) shows
the functional dependencies and can be used to derive the physiologically rele-
vant parameters;

2. Its partial derivatives give information about the changes in the response with
respect to changes in the input driver(s): Positive and negative derivatives or
potential turning points of the response may provide insight into the underlying
processes;

32



CHAPTER 4. PHASES OF THE METHODOLOGY

3. Plotting the network function helps to visualize the functional dependencies on
the climatic controls.

The hierarchy of the climatic controls allows this analysis to be confined to the rel-
evant climatic drivers. First, ANNs trained only on the dominant primary driver are
examined. The ANN models with only one dependent driver variable will be referred
to as one-dimensional response models. Then, the ANN models trained simultane-
ously with the dominant climatic control plus secondary driver(s) are analyzed for
their multivariate dependencies. The number of input drivers is expanded as long
as there is a significant improvement in the ANN mapping performance with the
following limitations:

Meaningful: The drivers should be physiologically meaningful.

Independent: The climatic drivers usually have obvious or hidden correlations that
may distort the dependencies. Therefore, it is important to be aware of cross-
dependencies and to keep the drivers as independent as possible.

Confounding: Confounding drivers should be included in the driver set in order to
obtain robust relationships.

Minimal number: The degrees of freedom of the empirical model increase with each
added driving variable. This may lead to a physiologically implausible mapping
of the response. Consequently, the number of input drivers should be kept as
low as possible.

4.6 Analyzing the sensitivities

The numerical partial derivatives characterize the changes in the ecosystem response
with respect to changes in the climatic input driver(s) for a given data tuple (see
Section 3.4). A large PaD means that a small change in this driver leads to a large
change in the responding output, thus, a highly sensitive response. The sign of the
derivative indicates whether the effect on the response is increasing (positive) or
decreasing (negative).

A measure of the total sensitivity of the ecosystem response to a climatic driver
over the range of analyzed data tuples is given by the absolute mean of the numerical
partial derivatives and their positive and negative fractions. The higher the means,
the more sensitive is the ecosystem response to a climatic driver.

4.7 Discussing the induced hypotheses

The results obtained are only meaningful if used in and put into the context of
ecosystem physiology. Therefore, a detailed discussion of the induced hypotheses
and their implications is an important phase of this methodology. In contrast to a
hypothetic-deductive approach, the strength of a fully inductive approach to thrive
only on the information present in the data is also its inherent limitation. In addition
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to the requirement of a high quality training dataset representative for the phenomena
studied (see Phase 1 in Section 4.1), the following points have to be considered when
interpreting the results:

Adequate response space: To reach the goal of modeling the overall response, an
annual dataset is appropriate. If the interest is in the light response curve, the
dataset should span time periods where the ecosystem stays in the same phe-
nological and ecological states with respect to the photosynthesis response. For
example, including months with leaves off would smear out the photosynthesis
response. Taking summer months but including months with drought condi-
tions might result in a light response curve where the saturation has a drop for
the highest irradiances. This would look like photoinhibition, but is actually
caused by the superposition of the light response curve with a reduced optimum
NEP under water stress. As an alternative to limiting the dataset to the same
state, the entire dataset can also be used but with an additional input variable
describing the changing condition, for example a proxy for the water stress.
With this, the ANN is able to distinguish between drought and non-drought
conditions and map the responses accordingly.

Artifacts: To avoid modeling artifacts present in a specific dataset or non-obvious
changes in the phenological or ecological states, the relationships identified
should prove to be robust for different time periods, e.g., individual months
vs. the whole summer period or summer months of different years.

Missing relevant driver: The ANN can show a good model performance, although
a physiologically relevant driver was missing. This implies that the effect of the
missing driver was mapped onto the included drivers through cross-correlations.
In this case, the relationships found are usually neither independent nor robust:
The mapped functional relationships will change as soon as another driver with
some cross-correlation or the actual missing driver is added. If adding drivers
does not change the main properties of the numerical partial derivatives, this is
a good sign for robustness.

Confounding factors: The hidden biases or indirect effects caused by confounding
phenological, ecological, or climatic factors are much harder to detect. To rule
out known confounding factors, these can be added to the data used for training
as observed or theoretical drivers. This way, their impact is included in the
modeled response, provided that the confounding factors are not correlated
with any of the other input drivers, that they are well defined over the whole
range, and that they do not add too many degrees of freedom to the network.
An alternative solution is to perform marginal sampling, where the dataset is
grouped into subsets for certain ranges of the confounding factor. The ANN
models are then trained on each of the subgroups. Robust relationships will
hold true for all of the subgroups.

Ecophysiological plausibility: Since the ANN models are constrained solely by
the data, some prior knowledge of ecosystem physiology is required to ensure a
proper choice of the representative dataset and to judge the plausibility of the
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results under consideration of potential confounding factors. Only then does
this inductive approach produce meaningful results.

The derived physiological properties are then compared to the existing hypotheses.
This comparison may identify differences or validate hypotheses, but also has the
potential to indicate new features present in the data. This last phase often leads to
a refined response query, followed by another cycle through the seven phases.

All seven phases of the methodology are independent of a specific data domain.
They can be generally applied to characterize an ecosystem’s response to its climatic
controls present in complex observational or synthetic datasets. The technical im-
plementation of the phases was achieved through highly flexible setup for pattern
generation and automated processing routines, as described in Appendix A. In the
next part of the thesis, the different areas of application of the methodology are
demonstrated for five examples.

35



Part II

Areas of application
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Chapter 5

Characterizing ecosystem responses

The methodology developed in Part I can be used as a “vision panel” to ecosystem
datasets for different areas of applications. The five areas presented in Part II range
from characterizing the ecosystem response (Chapter 5), over testing a specific hy-
pothesis (Chapter 6) and assessing competing light response curves (Chapter 7), to
evaluating terrestrial biosphere models (Chapter 8). Additionally, the methodology
can also be used to interpolate gaps in the flux measurements (Chapter 9). The
applications are all demonstrated on the same ecosystem dataset: the carbon flux
measurements at the Hainich forest.

In this chapter, the seven phases of the methodology are used to answer the
question: What are the climatic controls of the daytime NEP fluxes during the active
period of the Hainich forest as present in the data?
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Figure 5.1: Benchmarking of the daytime NEP response of the Hainich forest with
all twenty-five drivers. Top: Scatterplot of the modeled versus measured fluxes.
Bottom: Projection of the modeled (red circles) and measured (black circles) fluxes
onto PPFD .

5.1 Specifying the response query: Daytime NEP
response

The queried ecosystem response is the daytime response of the Hainich forest dur-
ing the active period. For this analysis, quality-checked level-3 datasets of the three
non-drought years (2000, 2001, and 2002) were obtained from the standardized Car-
boeurope IP database Papale et al. (2006). Since the interest is in the daytime
response, only data with a photosynthetic photon flux density (PPFD) of more than
10 µmol photon m−2 s−1 was selected. Furthermore, the analysis was restricted to
the active summer period with fully developed leaves from June to September and
to best quality data (quality flag = 0) with complete input driver data. Addition-
ally, five outlier data points of an exceptionally dry day, with a vapor pressure deficit
(VPD) higher than 18 hPa, and twenty-seven data points with unrealistic values of
the diffuse fractions (fdif = 0% and fdif > 100%) were removed from the dataset. The
total number of half-hourly data tuples analyzed was 3015.

The script used for generating the pattern for this response query is provided as
an example pattern generation script in Appendix A.
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5.2 Generating driver candidates
All observed driver data provided in the datasets were included as input driver can-
didates:

Rg (Total) Global Radiation (W m−2)
Rd Diffuse Global Radiation (W m−2)
PPFD (Total) Photosynthetic Photon Flux Density (µmol photon m−2 s−1)
Rn Net Radiation (W m−2)
Rr Reflected Radiation (W m−2)
Rh Relative Humidity (%)
SWC Soil Water Content (%)
Ta Air Temperature (◦C)
Ts1 , Ts2 Soil Temperature at 5 cm and at 30 cm Depths (◦C)
Gs Soil Heat Flux (W m−2)
Precip Precipitation (mm)
ZL Atmospheric Stability Parameter
WS Wind Speed (m s−1)
ustar Friction Velocity (m s−1)
WD Wind Direction (◦)

Several theoretical variables were generated, such as the following four latent
variables inferred from the observations:

fdif Diffuse Fraction (0% - 100%) = Rd/Rg

PPFDdif Diffuse PPFD (µmol photon m−2 s−1) = fdif · PPFD
PPFDdir Direct PPFD (µmol photon m−2 s−1) = PPFD − PPFDdif

VPD Vapor Pressure Deficit (hPa) = 6.1078 · (1− Rh
100

) · exp(17.08085·Ta
234.175+Ta

)

Though latent variables do not increase the information content hidden in the
dataset, they help improve the biological interpretability of the modeled ecosystem
response. However, there are also other theoretical variables that might add new
information such as:

Rpot Potential Radiation (Insolation) at the Top of Atmosphere (W m−2)
Tm Mean Daytime Air Temperature (◦C)
Fuzzy Fuzzy Variable for the Time of Day
NEPhh NEP Measurement of the Previous Half-hour

Additionally, the measurement of the radiative temperature of the canopy was
provided by the site PI Werner Kutsch:

Tc Radiative Canopy Temperature (◦C)

The set of twenty-five (observed and theoretical) variables comprised a broad
driver candidate set for the characterization of the ecosystem response.
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Figure 5.2: The standard deviation SDev of the model residuals binned by the
NEP flux magnitude in steps of 5 µmol CO2 m−2 s−1. (The dotted line is the linear
regression of SDev for the positive bins. The error bars show the standard deviation
of ten ANN training permutations.)

5.3 Benchmarking with all drivers

The ANN models trained with all climatic drivers yielded an R2 of 94.4(±0.1)%,
where the value in brackets is the standard deviation over ten ANN training permu-
tations. This benchmark means that 94.4% of the total variability of NEP in this
half-hourly dataset can be explained from the twenty-five climatic drivers, see Figure
5.1, top. The projection onto PPFD in the bottom graph shows that almost the
whole spread in the response is captured.

The standard deviation SDev of the model residuals can be used to get an estimate
of the remaining error. The SDev of the benchmark ANN models binned to intervals
of 5 µmol CO2 m−2 s−1 varied between 1.2 and 2.7 µmol CO2 m−2 s−1, see Figure 5.2.
To compare these results to previous work using paired observations or model residuals
from Richardson et al. (2008), the relationship between SDev and the magnitude of
NEP of the positive bins was determined using linear regression (dotted line):

SDev = 1.37(±0.04) + 0.060(±0.002) · NEP . (5.1)

The relationship obtained in equation 5.1 has an offset similar to the one previously
reported for Hainich, but with only half the slope. This means that the random error
estimated from the ANN benchmark models increases only half as fast with increasing
flux magnitude. ANN training setups with different sets of input variables showed
that the smaller increase can be attributed to including the diffuse radiation. A
minimal configuration with only PPFD , PPFDdif , VPD , and Ta as input drivers and
only three to five nodes in the hidden layer of the ANN resulted already in almost
half the slope. PPFDdif was not included in the analysis of Richardson et al. (2008).
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Figure 5.3: Primary R2 performance of the ANNmodels trained with a single climatic
driver at a time. (The dotted line is the benchmark performance of the ANN models
trained with all twenty-five drivers. The error bars indicate the standard deviation
of ten ANN training permutations; for most drivers this error bar is so small that it
is not visible on the graph.)

5.4 Identifying the driver hierarchy

The ANN models trained with one climatic variable at a time showed the best per-
formance with the radiative drivers, see Figure 5.3. There was only a slight difference
between the global radiation Rg (R2 = 81.65(±0.01)%) and just the photosyntheti-
cally active radiation PPFD (R2 = 82.16(±0.01)%).

It is interesting to note that the primary R2 performance of the reflected radiation
Rr and the net radiation Rn was just as high. The scatterplot in Figure 5.4 reveals,
that the four drivers PPFD , Rg , Rr , and Rn have high linear correlations and, thus,
almost the same information content. Based on common knowledge, it is understood
that the response is driven by the incoming and not the reflected or net radiation.
However, this example demonstrates how confounding variables may appear impor-
tant that are not the actual cause of the effect. Since PPFD is biologically more
relevant than Rg , it is used as the dominant driver for the following analysis of the
secondary and tertiary drivers. This example stresses that the results of this purely
empirical methodology have to be judged within the context of ecosystem physiology.

The direct part of the total radiation, PPFDdir , was less relevant as a primary
driver than the diffuse part PPFDdif . This is probably due to the fact that the
direct response saturates, whereas the diffuse response does not, as discussed below
in Section 5.5.2. Another interesting aspect is that the NEP measurement for the
previous half-hour explains 76.609(±0.003)% of the total variability. This indicates
the persistency of the meteorological conditions between successive half-hours and can
be taken as a measure of the lower performance limit of models used for predictions.

The relevance of the other climatic controls as secondary controls was determined
by training the ANNs with the dominating, biologically relevant PPFD plus one
secondary climatic driver at a time, see Figure 5.5. The highest improvement in R2

and SDev performance, thus the most relevant secondary control for the daytime NEP
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Figure 5.4: Scatterplot matrix of the radiative drivers. (Each column contains the
same X axis and each row the same Y axis, with the variable name provided in the
diagonal. The red dots are the scatter plot with a dashed line for the linear fit and
a solid line for the lowess fit. The diagonal panel shows the sampling density and
histogram of the variable.)

response, was the proportion of diffuse radiation. The performance improvement was
the same whether this information was presented as PPFDdir , PPFDdif , Rd , or diffuse
fraction fdif to the total PPFD in the ANN models.

The ANN models with one of the diffuse proportion drivers added explained over
7% extra variability (Figure 5.5, top) and reduced the SDev by over twenty percent,
from 3.7 to 2.9 µmol CO2 m−2 s−1 (Figure 5.5, bottom). The R2 of 89.5(±0.1)% is
close to the benchmarking performance, which indicates that the two drivers, total
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Figure 5.5: R2 (top) and SDev (bottom) performance of the ANN models trained
with PPFD plus a secondary climatic driver. The performance improvement (red)
indicates the relevance as a secondary driver. (See Figure 5.3 for further explanations
on the graphs.)

PPFD and proportion of diffuse light, explain almost all of the variability present in
this half-hourly dataset.

Consequently, the tertiary drivers provided only marginal further improvement,
see Figure 5.6. The remaining radiative drivers contained no additional information.
The additional information was now contained in the meteorological conditions at the
time of the measurement:

The canopy temperature Tc was slightly more relevant than the air temperature
Ta, the heat soil flux Gs was more important than the two soil temperatures, Ts1
and Ts2 . The precipitation Precip was not relevant on the half-hourly scale, since
rain does not contribute instantly to the NEP response. However, soil water content
SWC was also of little relevance during these non-drought summers. Vapor pressure
deficit VPD and relative humidity Rh both have the same significant relevance as a
tertiary driver.
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Figure 5.6: R2 (top) and SDev (bottom) performance of the ANN models trained
with PPFD and PPFDdif plus a tertiary climatic driver. The performance improve-
ment (red) indicates the relevance as a tertiary driver. (See Figure 5.3 for further
explanations on the graphs.)

The parameters related to the eddy covariance technique, WD , Ws , ZL, and
ustar , were all of little relevance, which is an indication of a clean dataset, i.e. these
parameters did not induce systematic biases. The importance of the Fuzzy variable for
the time of day disappeared, when the confounding variable VPD (the “true cause”)
was included in the model runs. This can be attributed to the fact that the Fuzzy
variable was mapping the decreased NEP response caused by high VPD during the
afternoon (not shown). The additional information in NEPhh is of the same order of
magnitude as in the meteorological drivers and can probably be attributed to similar
meteorological conditions at the previous half-hour.

Using the mapping performance of the ANN models as a measure of the relevance
of the climatic drivers allowed for a comprehensive analysis of the climatic controls
of the daytime NEP response. Now that the relevant climatic controls have been
identified, it is of interest to see what the mapped functional relationships actually
looked like, as presented in the following sections.
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PPFD Bias

NEP
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Figure 5.7: Final structure of one of the ANN models trained on the daytime NEP
response with the single climatic driver PPFD . (The widths of the lines correspond
to the magnitude of the weight parameters. The offset at each node is implemented
as the weight to an additional bias node (red) with a constant input level of one.)

5.5 Extracting the functional relationships

5.5.1 One-dimensional response to light

First the daytime NEP response to the dominating climatic driver, PPFD , was in-
vestigated. The final structure of one of the ANN models mapping NEP(PPFD) is
shown in Figure 5.7. It had the following network function:

NEP(PPFD) = −38.4 + (5.2)
105.4(

1 + 0.934 · e
(

0.440

1+14.6·e−0.00173·PPFD + 0.289

−1−5.53·e−0.00166·PPFD + 0.380

−1−5.08·e−0.00152·PPFD + 2.599

1+2.15·e0.00360·PPFD

))

Even though Equation 5.2 does not have biologically meaningful regression pa-
rameters, the physiological characteristics can be derived from the progression of this
analytical function and its derivative, see Figure 5.8. The derivative starts off almost
constant at the onset of light, corresponding closely to a linear initial slope. This
initial slope of 0.050 µmol CO2 m−2 s−1/µmol photon m−2 s−1 is the maximum light
use efficiency of the ecosystem, also called the initial quantum yield α. The offset of
NEP at zero light is the daytime ecosystem respiration and has a value of -2.9 µmol
CO2 m−2 s−1. Towards high PPFD values, the derivative approaches zero, denoting
saturation of the NEP response. At the highest irradiance of 1750 µmol photon m−2
s−1, the one-dimensional light response levels off to saturation (zero derivative) with
an optimum NEP of 22.5 µmol CO2 m−2 s−1. The characteristics of the light response
and the derived physiological parameters are discussed in more detail in Chapter 7.
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Figure 5.8: The daytime NEP response (top) and its numerical derivatives (bottom)
modeled with PPFD as a single climatic driver.

The one-dimensional light response describes the mean behavior of the daytime
NEP response with respect only to total PPFD . As shown in the last section on
the hierarchy of the drivers, however, the ecosystem response is multi-dimensional,
governed also by other climatic controls such as the proportion of diffuse light.

5.5.2 Multi-dimensional response functions

Before starting to look at the higher dimensional functional relationships, it is impor-
tant to consider the correlations among the input drivers. The scatterplot in Figure
5.4 already showed the correlations between the radiative drivers. Most of them are
related and thus correlated. However, PPFDdir and PPFDdif have little correlation
and can be used to investigate the dependence of daytime NEP on the diffuse radia-
tion.

Out of the meteorological variables, Ta, Tc, Ts2 , Gs , Rh, and VPD exhibited
some relevance as tertiary drivers, see Figure 5.6 above. The scatterplots in Figure
5.9 shows that there is little correlation between these variables and PPFDdif . The
same is true for PPFDdir (not shown). However, the meteorological variables have
some (cor-)relation amongst each other, especially Ta and VPD1 or Ta, Tc, and Gs .
Though there might be a confounding effect between VPD and PPFDdif , there is no

1Hence, if Ta is one of the network drivers, it is better to use the more independent Rh.
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Figure 5.9: Scatterplot matrix of the meteorological drivers. (See Figure 5.4 for
explanations on the graph.)

direct correlation of the two variables present in this dataset at the half-hourly scale.

As examples for multi-dimensional response functions, the relationship of
NEP(PPFDdir ,PPFDdif ) and NEP(PPFDdir ,PPFDdif ,VPD) are investigated in more
detail below.
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Figure 5.10: Final structure of one of the ANN models trained on the daytime NEP
response with the two climatic drivers PPFDdir and PPFDdif . (See Figure 5.7 for
explanations on the graph.)

Two-dimensional response to direct and diffuse light

The proportion of diffuse radiation was the most relevant secondary control of the
daytime NEP response at the Hainich forest (Section 5.4). Since total PPFD is
(cor-)related with each of the four diffuse proportion drivers, the functional depen-
dency of the NEP response on the diffuse proportion was extracted using direct PPFD
and diffuse PPFD as input drivers.

The final structure of one of the ANN models of NEP(PPFDdir ,PPFDdif ) is shown
in Figure 5.10. The projections onto the two climatic drivers in the top graph of Figure
5.11 show that the functional relationship of NEP to PPFDdif differs significantly
from that to PPFDdir . This fact is even more pronounced in the numerical partial
derivatives in the bottom graphs. The initial quantum yield of PPFDdif is almost
three times higher, its light use efficiency (magnitude of the derivative) is enhanced
throughout the response, and the NEP response shows no saturation even for high
PPFDdif . These results are in full agreement with Gu et al. (2002), who found
similarly enhanced light use efficiencies and weakened tendencies to cause canopy
saturation for the diffuse radiation.

An even better grasp of the relationship of NEP to direct and diffuse PPFD is
provided in the 3D-plot of the analytical network function in Figure 5.12. The density
of the data tuples (left graph) indicates that the NEP response is well constrained
by the data. The simplicity of the ANN model (right graph) demonstrates that the
extracted functional relationship NEP(PPFDdir ,PPFDdif ) is well suited to display
and quantitatively characterize the response.
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Figure 5.11: ANN model predictions (red circles) and half-hourly measurements
(black circles) of the daytime NEP response plotted against the two climatic drivers
diffuse PPFDdif (left) and direct PPFDdir (right). The graphs at the bottom show
the numerical partial derivatives.

)1-s 2-m snotohp lomµ( ridDFPP
200 400 600 800 1000 1200 1400

)1-s 
2-m snotohp lomµ( fi

dDFPP

100
200

300
400

500
600

700
800

)1- s 2-
m s

n
ot

o
h

p l
o

mµ( ri
d

D
F

P
P

-5

0
5

10

15
20

25
30

35

Output vs 2 Inputs DEHai00-02_p0264_v06_b00_00

)1-s 2-m snotohp lomµ( ridDFPP
200 400 600 800 1000 1200 1400

)1-s 
2-m snotohp lomµ( fi

dDFPP

100
200

300
400

500
600

700
800

)1- s 2-
m 

2
O

C l
o

mµ( 
P

E
N 0

5

10

15

20

25

30

Network Function DEHai00-02_p0264_v06_b00_00

Figure 5.12: Left: 3D-plot of the daytime NEP response to the climatic controls
diffuse PPFDdif and direct light PPFDdir for the individual half-hourly measurements,
modeled (red) and measured (black). Right: Closed symbolic representation of the
ANN model.
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Figure 5.13: Final structure of one of the ANN models trained on the daytime NEP
response with the three climatic drivers PPFDdir , PPFDdif and VPD . (See Figure
5.7 for explanations on the graph.)

Additional effect of VPD

The daytime NEP response was also affected by the amount of air moisture. To inves-
tigate this effect, the daytime NEP response was modeled with PPFDdir , PPFDdif ,
and VPD as the climatic input drivers, see Figure 5.13. Adding VPD improved the
R2 by 1.2% to 90.7(±0.1)% and reduced the SDev by 5% to 2.75 µmol CO2 m−2 s−1.

Since the daytime NEP response is now modeled with three inputs, the ana-
lytical function has too may dimensions to be directly visualized. For these multi-
dimensional relationships, the numerical partial derivatives are of great value to ex-
amine their behavior. The right bottom graph in Figure 5.14 shows that the daytime
NEP response first exhibits a slight increase (positive derivative) with respect to
VPD , then an optimum (zero derivative) around 4 hPa, and with increasing dryness
of the air a strong down-regulating effect (negative derivative).

The functional relationships obtained for the daytime NEP response of the Hainich
forest were very robust. Adding VPD did not change the behavior of the derivatives
with respect to PPFDdir and PPFDdif in Figure 5.14, compared to Figure 5.11.2

5.6 Analyzing the sensitivities

The numerical partial derivatives supply information about the sensitivity of the
ecosystem response to the climatic drivers. One interesting aspect is the change in
the sensitivity of NEP(PPFDdir ,PPFDdif ) to diffuse and direct light over the range
of the total available light. To examine this, the ecosystem dataset was binned (see

2This raises the question of whether the daytime NEP response to PPFDdif is really confounded
by VPD at the half-hourly time scale. The two drivers also showed only little correlation in Figure
5.9. However, this argumentation cannot be turned around. If the diffuse radiation, which is the
second most relevant driver, is missing as an input driver and only VPD is provided, then some of
the effect that should actually be attributed to the diffuse radiation might be mapped on VPD .
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Figure 5.14: ANN model predictions of NEP(PPFDdir ,PPFDdif ,VPD) (red circles)
and measurements (black circles) plotted against the three climatic drivers. The
graphs at the bottom show the numerical partial derivatives. The small gray sketch
depicts the functional relationship of NEP to VPD .

Section 4.1) into subsets of total PPFD for the analysis, see Figure 5.15. The en-
hanced light use efficiency of the diffuse radiation leads also to an enhanced sensitivity
throughout the daytime NEP response, while the sensitivity to direct radiation de-
creases due to saturation. The effect of the enhanced sensitivity to PPFDdif is even
more pronounced for high values of total PPFD, since the response does not saturate.

Grouping of the dataset into individual months for training and analysis can be
used to investigate the monthly variability of NEP(PPFDdir ,PPFDdif ,VPD) during
the summer. To look primarily at the effect of VPD , only early afternoon hours
(11:30-14:00) with stable light conditions but high changes in VPD were extracted
for this analysis. Figure 5.16 shows that the negative sensitivity to VPD peaks in
August, the hottest and driest month.

5.7 Discussing the induced hypotheses

Several hypotheses can be induced from the purely empirical modeling results above.
The benchmark ANN models in Section 5.3 provided a measure of the total explain-
able variability in the dataset from the twenty-five generated climatic drivers.

The fact that the standard deviation of the ANN model residuals is even be-
low the paired observation estimates from Richardson et al. (2008), corroborates the
assumption that the remaining error and thus the unexplained variability can be
mostly attributed to noise in the measurements. Moreover, it shows that the rele-
vant climatic drivers were included in the training dataset, and that the ANN models
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Figure 5.16: The positive and negative sensitivities of the daytime NEP response
to PPFDdir , PPFDdif , and VPD during early afternoon hours, modeled separately
for each month. (The error bars show the standard deviation of ten ANN training
permutations.)

were able to pick up the underlying correlations and fully capture the ecosystem re-
sponse. A more comprehensive assessment of the reliability of the ANN models, such
as their generalization ability and the impact of input uncertainty, can be found in
Chapter 10.

The correlations mapped in the benchmark ANN models also permit the recon-
struction of missing NEP measurements from the associated climatic data. Hence,
these models can be used as a so called gap-filling technique as evaluated in
Chapter 9.

During daytime, the NEP response in the active season is mainly dominated by
photosynthesis and respiration plays only a minor role. Hence, the radiative variables
were identified as the prevailing drivers of the response in Section 5.4. The behavior
of the one-dimensional light response curve found in Section 5.5 and the magnitude
of the derived physiological parameters agree well with the hypotheses on the light
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response in plant ecology for a deciduous broadleaf forest (Larcher, 2003). The agree-
ment demonstrates that the inductive modeling framework is able to extract the
underlying functional relationship directly from the data. Since this relationship was
derived solely from the observations, without a priori assumptions, the agreement
also provides an independent corroboration of the light response hypotheses. This
independent corroboration is used in Chapter 7 to assess competing semi-empirical
equations for the light response.

The new result, that the diffuse proportion of the radiation is the most relevant
secondary driver of the daytime NEP response at Hainich during the active season,
has long been suspected by site PI Alexander Knohl (personal communication, 2004,
Knohl & Baldocchi, 2008). However, the methodology presented here provides a data-
derived confirmation. The high input relevance and enhanced light use efficiency and
sensitivity of PPFDdif compared to PPFDdir (Figures 5.5, 5.11, and Figure 5.15)
stress the importance of the diffuse radiation for the ecosystem response.

To the author’s knowledge, this is the first analytical representation and visual-
ization of the relationship of the daytime response to both direct and diffuse light
(Figures 5.11 and 5.12). Herein lies the strength of this inductive approach: in addi-
tion to the detection and quantification of the impact of diffuse radiation, it provides
an explicit characterization of the functional relationship.

Unfortunately, the diffuse radiation is not measured at many of the flux tower
sites, and there are no global datasets available. However, as the dominant secondary
control of the half-hourly daytime NEP response, it should be included in ecosystem
models trying to predict the carbon flux at half-hourly or hourly timescales. The
hypotheses needed for the implementation can be based on the functional relationships
derived by the ANN models from the data. The implementation of diffuse radiation
can be expected to improve the agreement between the response functions extracted
from observational data and the synthetic data of the two terrestrial biosphere models
evaluated in Chapter 8.

The sensitivity analysis in Section 5.6 showed that the NEP response to VPD
peaks in August, the hottest and driest month. In a study by Schulze (1970) on the
carbon gas exchange of single beech trees in Sollingen, 100 km north-east of Hainich,
the month of August also showed the strongest negative effect due to dry atmospheric
conditions. Thus, the response to air moisture found at the tree level can be observed
in the carbon flux measurements at the ecosystem level.

Overall, the methodology enabled a very comprehensive characterization of the
daytime NEP response at the Hainich forest directly from the eddy covariance mea-
surements. The FLUXNET database (www.fluxdata.org), with hundreds of site years
available from flux towers all over the world, provides a huge study ground for further
exploration. In the next chapter, rather than trying to characterize the ecosystem
response, the methodology is used to set up a different kind of application: to test a
specific hypothesis.
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Chapter 6

Testing specific hypotheses

As a second area of application, the methodology can be used to test specific hy-
potheses by analyzing if a predicted effect is present in the ecosystem datasets. As
an example, the net effect of the diffuse radiation at the Hainich forest is examined.

Diffuse radiation leads to an enhanced light use efficiency and thus an increased
NEP response of the Hainich forest, as explored in previous chapter. However, less of
the potential radiation Rpot is received at the surface for high diffuse fractions due to
the absorption and reflection by clouds and aerosols, and less light leads to a decrease
in the NEP response. It is still widely debated whether the overall effect is positive
or negative. A detailed review of the opposing research results can be found in Knohl
& Baldocchi (2008).

To get further insight into the net effect of diffuse radiation on NEP , Knohl &
Baldocchi (2008) set up a biophysical multilayer model of the canopy for the Hainich
site, tuned with the local measurements of the atmospheric transmission. Their model
predicted an optimum in the NEP response for a diffuse fraction of 0.45. Whether
this hypothesis can also be detected directly in the measurements is investigated in
the following.
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Figure 6.1: Scatterplot matrix of the three climatic variables potential radiation Rpot ,
diffuse fraction fdif , and vapor pressure deficit VPD . (See Figure 5.4 for explanations
on the graph.)

6.1 Specifying the response query: Net effect of
diffuse radiation

Again, the ecosystem response queried is the daytime response of the Hainich forest
during the active season. Therefore the same dataset as in the previous chapter was
used, see Section 5.1 for a detailed description.

6.2 Generating driver candidates

The theoretical variable Rpot describes the total incoming radiation of the sun on top
of the atmosphere that could potentially reach the ecosystem. The other variable of
interest is the fraction of diffuse to total light fdif . Since fdif has some correlations with
the vapor pressure deficit VPD , see Figure 6.1, and could therefore cause confounding
effects, VPD was included in the analysis as a third input driver.

6.3 Benchmarking with all drivers

The structure of one of the ANN models trained with all three drivers Rpot , fdif , and
VPD can be found in Figure 6.2 (left). The ANN model captures 75.1(±0.5)% of the
variability in the half-hourly measurements, see Figure 6.2 (right). Since Rpot is only
an indirect driver of the daytime NEP response, the R2 performance is lower than of
the ANN models using one of the other radiative variables in Section 5.4.
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Figure 6.2: Network structure (left) and scatterplot of modeled versus measured
NEP (right) for one of the ANN models trained with Rpot , fdif , and VPD .

6.4 Extracting the functional relationships

Since the daytime NEP response was again modeled with too many dimensions to
directly visualize the analytical network function, the numerical partial derivatives
are used to infer the functional relationships. The bottom graphs in Figure 6.3 show
the derivatives of the modeled NEP(Rpot ,fdif ,VPD) response with respect to each of
the drivers. The derivative with respect to the potential radiation is, as expected,
always positive. The derivative with respect to the vapor pressure deficit becomes
clearly negative with increasing dryness of the air, as in Section 5.5.2.

The functional relationship of NEP to fdif is depicted in the small gray sketch of
Figure 6.3. The daytime NEP response is at first enhanced (positive derivative) until
it reaches an optimum (zero derivative) and then reduced (negative derivative). By
keeping the third driver VPD fixed, the two dimensional projection NEP(Rpot ,fdif )
can be used to illustrate this behavior, see Figure 6.4. The data-derived net effect of
the diffuse radiation hence also shows an optimum, which ranges from diffuse fractions
of 28% to 44%.

The majority of the half-hours in the dataset are beyond the optimum range of fdif ,
as can be seen in Figure 6.3, middle. These counteract the positive effect on the NEP
response for low diffuse fractions. Calculating the mean of all half-hourly numerical
derivatives gives an indication of the overall effect. The average numerical derivative
is -0.5 µmol CO2 m−2 s−1 per half-hourly data point, thus a small but negative overall
effect on NEP from diffuse radiation at the Hainich site for the daytime summer data
of the years 2000 to 2002.
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Figure 6.3: ANN model predictions of NEP(Rpot ,fdif ,VPD) (red circles) and mea-
surements (black circles) plotted against the three climatic drivers. The small gray
sketch depicts the functional relationship of NEP to fdif .
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6.5 Discussing the induced hypotheses
The data-derived net effect of the diffuse radiation revealed an optimum range of
28% to 44%, which is close to the optimum of 45% predicted by (Knohl & Baldocchi,
2008) using the biophysical multilayer model.

Both optima are at diffuse fractions, where there is less diffuse than direct light.
Since the light conditions at the Hainich forest were mostly beyond the optimum
diffuse fraction, the overall effect of the diffuse light was on average slightly negative
for the three years 2000 to 2002. Since these are very site specific results, it would be
of interest to analyze how this response is manifested in other types of ecosystems.

The above application example showed how the methodology can be used for
testing new hypotheses. Rather than setting up a complex model, this “vision panel”
to the data might be able to provide direct and instant answers. The data-derived
answers can also be used to assess competing hypotheses, as demonstrated in the next
chapter.
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Chapter 7

Assessing competing semi-empirical
equations

Often, ecophysiological processes such as the response to light are implemented in
models as hypothesis-based “semi-empirical” equations. Usually, the assessment of
these equations is based on their fit performance and their robustness for use in non-
linear regression (NLR). These two criteria alone, however, are not sufficient if these
equations are also used to derive meaningful ecophysiological parameters. Here, the
presented methodology can be used to look at the functional relationships present in
the ecosystem datasets. The purely empirical relationships thus found can then serve
as data-derived references to assess competing working hypotheses.

The application of the methodology as an assessment tool is demonstrated for light
response curves, which are one-dimensional semi-empirical equations for NEP(PPFD)
used to model the daytime NEP response to light. They are widely applied to carbon
flux datasets for:

• Identification of the initial quantum yield and the optimum gross primary pro-
duction of an ecosystem (Zhang et al., 2006),

• Partitioning of the net carbon fluxes into respiration and gross primary produc-
tion (Gilmanov et al., 2003),

• Gap-filling of missing carbon flux data points (Falge et al., 2001; Moffat et al.,
2007),

• Estimation of nighttime respiration from daytime measurements (Lasslop et al.,
2009), or

• Parameterization of the light response in higher complexity models such as
TBMs (e.g. Knorr & Kattge, 2005; Krinner et al., 2005).
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Figure 7.1: Sketch of a typical light response curve NEP(PPFD) (red dashed line,
top) and its derivative (bottom). The black circles are the half-hourly measurements
of the daytime NEP response of the Hainich forest.

7.1 Specifying the response query: Light response
curve

Since this application of the methodology aims to assess competing mathematical
representations, the established theory of the light response (e.g. Larcher, 2003) is
reviewed and the key properties formulated as mathematical constraints in the fol-
lowing.

The sketch in Figure 7.1 illustrates the light response. The measured net ecosys-
tem productivity NEP is equal to the gross primary production GPP (uptake of
carbon by photosynthesis) minus the ecosystem respiration ER (release of carbon):

NEP = GPP − ER. (7.1)

At the light intercept to zero radiation, there is no uptake but only the daytime
respiration ERdayt :

NEP(PPFD) = −ERdayt for PPFD = 0. (7.2)

For low irradiance, the uptake is very small and respiration exceeds the CO2

uptake by photosynthesis until the light compensation point PPFDcom . Here the
carbon release and the uptake are at equilibrium:

NEP(PPFDcom) = 0. (7.3)
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At very high irradiance, PPFDsat , the photosynthetic process saturates:

NEP(PPFDsat) = const = NEPsat . (7.4)

The optimum gross primary production GPPopt is the light-saturated (maximum)
photosynthesis rate:

GPPopt = NEPsat + ERdayt . (7.5)

The characteristics of the light response curve can be divided into three phases:
(1) linear increase, (2) transition, and (3) saturation. In each phase, the curve has
distinctive basic properties in its shape (Figure 7.1, top), which can be best depicted
in the slope (first derivative, Figure 7.1, bottom).

Phase 1: At first the CO2 uptake is linear, driven by a light-limited photochem-
ical process. The proportionality factor (slope) of the maximum efficiency of light
utilization is the initial apparent quantum yield α:

dNEP(PPFD)

dPPFD
= α for small PPFD . (7.6)

A linear response means, that the function has a constant slope and the first
derivative thus intercepts the NEP -axis horizontally towards zero light.1

Phase 2: In the transition phase, enzymatic and carbon supply processes start
to limit the photosynthetic uptake of carbon. The response levels off from a steep
linear increase towards saturation. This change implies a turning point PPFDturn

in the slope (first derivative) from concave-down to concave up. At PPFDturn , the
curvature (second derivative) is extremal and the third derivative thus zero:

d3NEP(PPFDturn)

dPPFD3 = 0. (7.7)

Phase 3: In the saturation phase, the light response for C3 plants fully saturates.
The response becomes flat and its slope zero:

dNEP (PPFD)

dPPFD
= 0 for PPFD > PPFDsat . (7.8)

The estimated physiological parameters depend on the mathematical character-
istics of the light response curve in these three phases. To investigate the one-
dimensional response to light (see also Section 5.5.1), the daytime NEP response
during the active season is of interest. To avoid effects of phenology or heat stress later

1Below the light compensation point PPFDcom , the Kok effect may cause a break from linearity
(Kok, 1948; Atkin et al., 2000); this effect is not further considered here.
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Figure 7.2: The standard deviation SDev of the ANN model residuals binned by the
NEP flux magnitude in steps of 5 µmol CO2 m−2 s−1. (See Figure 5.2 for explanations
on the graph.)

in the summer at the Hainich forest, the data selection criteria described in Chapter 5
were constrained even further to data from spring and early summer of the two years
2000 and 2001. Furthermore, only days with similar mean daytime temperature (i.e.
between 12.5◦C and 17.5◦C) were chosen to reduce the effect of temperature. This
resulted in a dataset that comprised approximately 700 data points of best quality
data from approximately 30 separate days.

7.2 Benchmarking with all drivers

Again, benchmarking can be used to determine how much of the variability in the
NEP fluxes can be explained. The ANN models for NEP(PPFD) had an R2 perfor-
mance of 79.00 (±0.01)%. The standard deviation SDev of the ANN model residuals
can be seen in Figure 7.2. To compare these residuals with the previous benchmark-
ing result with 25 climatic drivers in Section 5.3, the linear relationship of the model
residuals and the magnitude of NEP was calculated for positive fluxes:

SDev = 2.5(±0.3) + 0.11(±0.02) · NEP . (7.9)

Though the dataset had been limited to reduce the effects of phenology and temper-
ature, PPFD alone is not sufficient to capture the full NEP response. Equation 7.9
has twice the offset and twice the slope compared to Equation 5.1 of the benchmark
network trained with all twenty-five climatic drivers.

An extra 10% of this unexplained variability can be attributed to the diffuse light
proportion, which was identified as the second most important driver in Section 5.4.
Modeling of the daytime NEP response to total PPFD as a one-dimensional function
can only be expected to resemble the mean behavior to light.
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Figure 7.3: The ANN light response curve (top) and its numerical derivatives (bot-
tom). The black circles are the half-hourly measurements of the daytime NEP re-
sponse of the Hainich forest.

7.3 Extracting the functional relationships
ANNs trained with the backpropagation algorithm can be regarded as nonparametric
nonlinear regressions. After training, the NEP response to PPFD was mapped by
the ANN model, see Figure 7.3. The data-derived NEP response to PPFD exhibits
the expected behavior: a steep, almost linear initial increase leveling off to saturation
for high PPFD .

The analytical network function of the ANN model in Figure 7.3 was:

NEP(PPFD) = −36.73 + (7.10)
101.91(

1 + e
−0.392+ 0.461

1+e1.197+0.829·(−1.005+0.00114·PPFD)
+ 2.627

1+e3.747+3.110·(−1.005+0.00114·PPFD)

)
Though the ANN weight parameters have no direct physiological meaning, the mathe-
matical characteristics of this network function can be used to derive the physiological
parameters using Equations 7.2 to 7.8 above:

Phase 1: At low PPFD , the light response is almost linear, with a horizontal
slope. The light compensation point PPFDcom is at 66 µmol photon m−2 s−1. The
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intercept with zero gives an initial quantum yield α of 0.0501 and a daytime respiration
ERdayt of 3.26 µmol CO2 m−2 s−1.

Phase 2: The slope then curves down to zero with a turning point, PPFDturn , at
276 µmol photon m−2 s−1.

Phase 3: For PPFD higher than 13491µmol photon m−2 s−1, the response sat-
urates and the derivative approaches zero. The optimum gross primary production
GPPopt is 25.95 µmol CO2 m−2 s−1.

7.4 Discussing the induced hypotheses

The response of plants to light is dominated by photosynthesis. This assimilation
of carbon using light has been widely studied since Wolkoff (1866) and there exists
a well established theory at the leaf and plant level. The light response curve and
its derivative, mapped by the ANN model, display the behavior expected from plant
ecology for a deciduous broadleaf forest (Larcher, 2003). With the eddy covariance
technique, the measurements have been brought to the ecosystem level. The fact
that the ANN model was able to detect this response directly in the measurements
(without prior assumptions about the functional shape), independently confirms that
the theory derived on the plant level can be scaled to the ecosystem level.

In the following, all six light response curves used by the eddy covariance com-
munity plus a new suggestion are examined. These semi-empirical equations have a
similar curve progression in the mean fit region and their fit performance is thus very
similar. However, there are large discrepancies at the edges, where the physiological
parameters are derived. This had been noticed by some authors, as the parameters
became implausible, and led to personal preferences of certain equations (e.g. Aubinet
et al., 2001; Gilmanov et al., 2003). However, an objective analysis of the character-
istics of the light response curves and their ecosystem physiological appropriateness
remained open and is now attempted.

Evaluation of the light response curves

The non-linear regression of the seven semi-empirical light response curves was per-
formed on the same ecosystem dataset of the Hainich forest as used for the ANNs
described above. All model results can be found in Figure 7.4. The most crucial ar-
eas of the light response are right at the edges, since these determine the magnitude
of α, ERdayt , and GPPopt . It is precisely here, however, that the characteristics of
the prescribed functional relationships of some of the semi-empirical functions differ
from both, the features expected from basic plant physiology and the features present
in the observational data (as mapped independently with the ANN models). This
led to large differences in the estimated physiological parameters, despite similar fit
performances, see Table 7.1.

1The value of PPFDsat was calculated at the point where the derivative of the response decreases
below 0.0025 (∼ 1/20α).
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Artifi-
cial
Neural
Netw.

Linear
Func.
with
Limit

Rect.
Hyper-
bola

Mod.
Rect.
Hyper-
bola

Non-
rect.
Hyper-
bola

Smith
Sig-
moid

Log.
Sig-
moid

Exp.
Satu-
ration

R2 79.0% 67.8% 78.7% 78.7% 79.0% 79.0% 79.0% 79.0%
RSME 4.16 5.15 4.19 4.19 4.16 4.16 4.16 4.15
Quantum yield α 0.0501 0.0518 0.0846 0.0846 0.0530 0.0493 0.0450 0.0639

— (4%) (69%) (69%) (6%) (-2%) (-10%) (27%)
ERdayt 3.26 3.36 4.72 4.72 3.42 3.28 2.88 3.91
(µmol CO2 m−2 s−1) — (3%) (45%) (45%) (5%) (1%) (-12%) (20%)
GPPopt 25.95 25.65 35.67 29.45 29.02 27.4 25.16 27.2
(µmol CO2 m−2 s−1) — (-1%) (37%) (14%) (12%) (6%) (-3%) (5%)
PPFDcom 66 65 64 64 67 67 64 66
PPFDsat 1349 495 >2000 >2000 1466 1395 1189 1381
PPFDturn 276 495 none none 274 277 368 2000
(µmol photon m−2 s−1)
Curvature d — — — — 0.75 — — —

Table 7.1: Fit performance and estimates of the physiological parameters for mod-
eling the light response at Hainich. (Stated in brackets is the deviation from the
estimates of the artificial neural network, with percentages larger than 20% marked
in bold.)

The seven equations are evaluated in the following based not only on model fit
performance but also on their mathematical properties. An appropriate mathematical
description of the ecosystem response to light should correctly reflect the three phases
in order to provide an adequate estimate of the physiological parameters. The purely
empirical estimates of the physiological parameters from the ANN model serve as the
reference.

7.4.1 Equation 1: Linear function with upper limit

The most basic mathematical form of the light response is a piecewise linear function
terminated by a stationary upper limit (Blackman, 1905):

NEP(PPFD) = α · PPFD − ERdayt for PPFD < PPFDsat ,turn , (7.11)
NEP(PPFD) = GPPopt − ERdayt for PPFD ≥ PPFDsat ,turn . (7.12)

Evaluation: These equations do not capture the overall response (Figure 7.4), but
only correctly resemble the first and third phases. However, the linear fit performed
between 50 and 150 µmol photon m−2 s−1 and the limit fit performed above 1300
µmol photon m−2 s−1 provided good estimates for α, ERdayt , and GPPopt (Table 7.1).
Though this function obviously oversimplifies the light response of photosynthesis and
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Figure 7.4: The ANN and the seven semi-empirical light response curves fitted to
the daytime NEP measurements of the Hainich forest (black circles). Plotted below
are the derivatives with incorrect behavior indicated by black arrows.

is not suitable for modeling the overall NEP response, it is capable of approximating
the three physiological parameters.

7.4.2 Equation 2: Rectangular hyperbola

A hyperbola is the section of a conical cylinder. Three different mathematical rep-
resentations are commonly used for modeling the light response: the rectangular
hyperbola, the modified rectangular hyperbola, and the non-rectangular hyperbola.

Michaelis & Menten (1913) originally derived a rectangular hyperbola for enzyme
reaction rates as a function of the substrate concentration. Later research on the
kinetics of photosynthesis also yielded a rectangular hyperbola (e.g. Baly, 1935; Smith,
1938; Rabinowitch, 1951):

NEP(PPFD)) =
α · PPFD ·GPPopt

GPPopt + α · PPFD
− ERdayt . (7.13)
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Evaluation: The behavior of this function is contrary to the required characteris-
tics of the light response, especially at the edges (Figure 7.4). At low light, instead of
leveling off to a constant slope, the rectangular hyperbola’s slope peaks to its highest
value. This led to major overestimates in α of 69% and in ERdayt of 45% (Table 7.1).
At high irradiance, the saturation is hyperbolic and only fully saturates at infinity.
Therefore, the derivative of the hyperbola shows no evidence of having reached satu-
ration, even for the highest observed PPFD . This resulted in overestimates in GPPopt

of up to 37%.

7.4.3 Equation 3: Modified rectangular hyperbola

The modified rectangular hyperbola is the same function as Equation 7.13, but with
the saturation parameter GPPopt determined not at infinity but at a PPFD of 2000
µmol photon m−2 s−1 (Falge et al., 2001):

NEP(PPFD) =
α · PPFD

1− (PPFD/2000) + (α · PPFD/GPPopt)
− ERdayt . (7.14)

Evaluation: Since the saturation parameter GPPopt is determined not at infinity,
but at PPFD of 2000 µmol photon m−2 s−1, the overestimate of GPPopt was reduced
to 14% (Table 7.1).

7.4.4 Equation 4: Non-rectangular hyperbola

The non-rectangular hyperbola is a more general hyperbola derived for photostation-
ary concentrations (Rabinowitch, 1951):

NEP(PPFD) = (7.15)

α · PPFD + GPPopt −
√

(α · PPFD + GPPopt)
2 − 4 · α ·GPPopt · d · PPFD

2d
− ERdayt .

The additional curvature parameter d ∈ [0, 1] changes the shape of this hyperbola
from a rectangular hyperbola for d → 0 to a linear response function with an upper
limit for d→ 1.

Evaluation: The freedom of the extra parameter d cannot be fully constrained
due to the variability in the eddy covariance measurements. To demonstrate this, the
non-rectangular hyperbola was fitted to the dataset for fixed values of d , see Figure
7.5. For d between 0.1 and 0.9, the curvature of the non-rectangular hyperbola
changes only slightly and all graphs are well within the measurement noise. This led
to an equal R2 performance (78.9±0.1%), whereas the initial derivative, the quantum
yield α, varied by almost 100%. At the cell and plant levels, the measurements are
more confined and the curvature is clearly present in the data. There d typically
ranges from 0.7 to 0.99 and can be related to changes in the biochemistry (Ögren,
1993).
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Figure 7.5: The non-rectangular hyperbola (top) and its derivative (bottom), fitted
with fixed values of the curvature parameter d.

However, constraining the curvature parameter d is critical, since the non-rectan-
gular hyperbola only fulfills the criteria of the light response at high values of d . With
a high d of 0.75, the non-linear regression on this dataset yielded good estimates of
α, ERdayt , and GPPopt (Table 7.1).

7.4.5 Equation 5: Smith sigmoid

Another class of functions used to describe the light response are sigmoids with an
S-curve shape: the Smith sigmoid and the logistic sigmoid.

The Smith equation has the following algebraic function (Smith, 1937, 1938):

NEP(PPFD) =
α ·GPPopt · PPFD√

GPPopt
2 + (α · PPFD)2

− ERdayt . (7.16)

Evaluation: The Smith equation is a sigmoid function that fulfills the character-
istics of the light response in all three phases (Figure 7.4). Therefore, the estimated
physiological parameters agreed well with estimates from the ANN model for all three
sites (Table 7.1).
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Figure 7.6: Graph of the logistic sigmoid function.

7.4.6 Equation 6: Logistic sigmoid

The characteristics of the light response are also resembled by the logistic sigmoid
function. The upper right half (marked red) of the sigmoid exhibits the required
behavior, see Figure 7.6: a linear initial slope, a maximum curvature in the transition
phase, and leveling off to full saturation for higher values. The parameterization to
model the ecosystem response to light is given by:

NEP(PPFD) = 2 ·GPPopt ·

(
−0.5 +

1

1 + e
−2α·PPFD
GPPopt

)
− ERdayt . (7.17)

A literature search showed that a mathematically equivalent version, expressed
as a hyperbolic tangent, has already been used for photosynthesis (Jassby & Platt,
1976):

NEP(PPFD) = GPPopt · Tanh
(
α · PPFD
GPPopt

)
− ERdayt . (7.18)

Both equations have not been used with eddy covariance carbon flux data before.
They are referred to as the logistic sigmoid function in the following, since this name
describes its functional shape rather than its trigonometric properties.

Evaluation: This sigmoid function also exhibits the characteristics of the light
response in all three phases (Figure 7.4) and the estimated physiological parameters
agreed well with the ANN model results (Table 7.1). In contrast to the other light
response curves, this function tends to slightly underestimate the parameters.

7.4.7 Equation 7: Exponential saturation

The cumulative function of an exponential distribution can also be used to model the
light response:

NEP(PPFD) = GPPopt ·
(

1− e
−α·PPFD
GPPopt

)
− ERdayt . (7.19)
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This function has numerous names and references in the literature. The term expo-
nential saturation function is used here, again referring to the shape of the equation.

Evaluation: Towards the limit of zero light, the slope continuously increases
peaking to its highest value right at the intercept (Figure 7.4). This led to overesti-
mates in α of 27% and ERdayt of 20% (Table 7.1). This function also has no turning
point. Only the third phase is well represented by this exponential function and
GPPopt matched the ANN model estimate within 5%.

Overall assessment

The fit performances of the seven light response curves assessed were very similar, giv-
ing little indication on the best choice. However, their mathematical properties differ
significantly leading to big discrepancies in their estimates of the physiological param-
eters. The rectangular hyperbola, also called Michaelis-Menten equation, yielded the
highest overestimates of all three physiological parameters. Though this has already
been recognized (e.g. Aubinet et al., 2001; Gilmanov et al., 2003), it continues to be
the most widely used light response curve in NLR algorithms, probably because of its
robustness. This use should be reconsidered, since the rectangular hyperbola belongs
to the wrong function class: its basic characteristics are inappropriate to describe the
three phases of the light response.

The non-rectangular hyperbola exhibits the correct functional behavior only for
high values of its curvature parameter. If used on data with high variability, such as
the eddy carbon flux measurements over an ecosystem, the extra freedom in the curva-
ture is not well enough constrained and leads to increased uncertainty in the estimates
of the physiological parameters. Moreover, the regression of the non-rectangular hy-
perbola only converges if there is a clear curvature present in the data, which is not
always the case in conditions such as dim light during the wintertime. Non-linear
regression runs with the curvature parameter d fixed to an appropriate value may
help to overcome this problem.

A correct description of all three phases is provided by the two sigmoid semi-
empirical functions: the Smith and the logistic sigmoid. Their use ensures an ap-
propriate basic functional form, resulting in adequate estimates of the physiological
parameters even on the noisy eddy covariance data. To test their robustness, the
two sigmoid functions were used with sparse data from single days, and the logistic
sigmoid proved as robust as the rectangular hyperbola. Though these two equations
have not been used with the eddy covariance data, a recent study in marine research
by Ritchie (2008) also suggests that the logistic sigmoid function is an appropriate
choice for modeling asymptotically saturating photosynthesis.

The impact of using an inappropriate semi-empirical model depends on the appli-
cation. For gap-filling, the overall fit performance is crucial and all models but the
linear with upper limit will be sufficient. If the model is also used to partition the data
into gross primary production and ecosystem respiration or to derive the physiological
properties of the ecosystem, then the choice of an inappropriate light response model
can result in significant errors. To illustrate this, the half-hourly NEP measurements
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of Hainich for the year 2001 were gap-filled and partitioned using the NLR algorithm
of Desai et al. (2005), once using the rectangular hyperbola and once using the logistic
sigmoid function. The sums were calculated for the gap-filled daytime data of the
productive season from May to October. The sum of NEP was almost the same, 1540
µmol CO2 m−2 s−1 and 1550 µmol CO2 m−2 s−1 respectively. However, the derived
estimate of ERdayt was 760 µmol CO2 m−2 s−1 with the rectangular hyperbola and
only 530 µmol CO2 m−2 s−1 with the sigmoid, yielding a significant difference of 30%.

These results demonstrate the usefulness of the methodology to assess multiple
hypotheses. With the aid of the data-derived light response curve, the shortcomings
in some of the commonly used semi-empirical light response curves could be clearly
depicted. A more detailed analysis with an extension to other types of forests is
explored in Moffat (In preparation). As illustrated in this application example, the
methodology can be used to revise current hypotheses by providing a link between the
observations and their semi-empirical representation. This will hopefully lead to an
improved implementation of the ecosystem responses in models. In complex models,
such as terrestrial biosphere models, the modeled ecosystem response is the product
of many implemented processes. How the methodology can be used to characterize
this synthetic ecosystem data is presented in the next chapter.
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Evaluating ecosystem models

The methodology provides an inverse characterization of the ecosystem response to
the climatic drivers, compare also Figure 1.8. In the last chapters, this has only been
applied to observed data. In the following area of application, the inverse characteriza-
tion is used on synthetic data produced by two complex ecosystem models. Since the
simulated ecosystem response of such complex models is the result of a combination
of and interaction amongst several implemented processes, their individual dependen-
cies are usually hard to trace. Here a direct feedback on the implementation of the
processes can be provided by extracting individual aspects of the simulated ecosystem
response using the presented ANN framework. Comparing the simulated functional
relationships extracted from the synthetic data with the observed functional relation-
ships extracted from the measurements, permits a comprehensive evaluation of the
ecosystem models. Again the application example is demonstrated on the daytime
NEP response at Hainich forest.
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8.1 Specifying the response query: Daytime NEP
modeled by two TBMs

The synthetic ecosystem datasets are offline runs at site level from the two terrestrial
biosphere models ORCHIDEE and BETHY, further described below. The driving
meteorology was based on the standardized half-hourly datasets of the Hainich forest
from the Carboeurope IP database (Papale et al., 2006) for the years 2000 and 2001.

Again, the study focuses on the daytime response during the active period. The
data selection for this analysis was performed according to the description in Section
5.1, but since the dataset comprised only two (rather than three) years, the total
number of half-hourly data tuples analyzed was smaller (2467).

8.1.1 Model 1: ORCHIDEE

ORCHIDEE (Organizing Carbon and Hydrology In Dynamic Ecosystems Environ-
ment) is a latest generation dynamic general vegetation model. It couples biogeo-
physical processes, biogeochemical processes and vegetation dynamics (Krinner et al.,
2005) and has been included in global circulation model runs (Marti et al., 2005). OR-
CHIDEE models the half-hourly fluxes of energy, water and CO2 with a daily update
of vegetation parameters, such as leaf area index (LAI ), carbon allocation and soil
carbon dynamics.

The ORCHIDEE runs were performed with the standard parameterization for
model evaluation purposes, without further tuning on site data. In addition to the
meteorological data provided in the datasets, ORCHIDEE used soil type and vegeta-
tion composition as model inputs.

8.1.2 Model 2: BETHY

BETHY (Biosphere Energy-Transfer HYdrology) is a terrestrial biosphere model that
simulates the fast vegetation processes (Knorr & Kattge, 2005). It is part of the dy-
namic general vegetation model JSBACH (Joint Simulation of Biosphere Atmosphere
Coupling in Hamburg, Raddatz et al., 2007) and will be included in the latest version
of the COSMOS earth system model. BETHY describes the short timescale processes
of energy and water exchange between the atmosphere and the biosphere, including
soil moisture, photosynthesis, and heterotrophic and autotrophic respiration.

The BETHY runs were performed for the gap-filling comparison project (Moffat
et al., 2007). Model parameters were optimized against observed carbon and latent
energy fluxes, considering prior information about parameter values to constrain these
within reasonable ranges. The optimized parameter sets were then used to model the
NEP response at Hainich for the whole year. As additional model inputs, BETHY
used daily LAI derived from remote sensing data, soil type, texture, and depth,
canopy height, and tower height.
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Figure 8.1: Scatterplot of the simulated NEP fluxes versus measured NEP fluxes
for ORCHIDEE (left) and BETHY (right). (The thick solid line represents the linear
regression fit, while the thin solid line is the identity line.)

Of the two models, BETHY has the less complex model structure. For exam-
ple, the leaf area index was generated within the ORCHIDEE model itself, whereas
BETHY made use of remote sensing data.

Model fit performances

The standard measure of the model fit performance is the correlation coefficient R2 .
The R2 performance of 45.2% achieved by ORCHIDEE for the selected dataset was
poor, see Figure 8.1, while BETHY’s R2 performance of 79.6% was significantly
better. This can to a large extent be attributed to the prior optimization of the
BETHY parameters against the observed fluxes.

The fit performance only gives a number describing the mismatch between the
measurements and the simulations. The ANN modeling framework is used in the
following to get further insight into the characteristics of the mismatch.

8.2 Generating driver candidates

For this type of analysis, the ANN driver candidates should comprise the same set of
driving inputs as used to produce the synthetic ecosystem datasets. The meteorolog-
ical drivers of ORCHIDEE were Rg , Ta, Ts2 , Rh, SWC , and Precip and of BETHY
were PPFD , Ta, VPD , and SWC . However, Precip was excluded from the set of
driver candidates because of the lack of correlation on the half-hourly time scale, as
discussed in Section 5.4. Its effect was nonetheless indirectly included by considering
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SWC .
Additionally, the three drivers, PPFDdif , PPFDdir , and fdif , were added as driver

candidates, since the proportion of diffuse radiation proved to be the most relevant
secondary control to explain the daytime NEP measurements at Hainich (see Section
5.4).

The full set of ANN driver candidates was as follows:

PPFD (Total) Photosynthetic Photon Flux Density (µmol photon m−2 s−1)
Rg (Total) Global Radiation (W m−2)
VPD Vapor Pressure Deficit (hPa)
Rh Relative Humidity (%)
SWC Soil Water Content (%)
Ts2 Soil Temperature at 30 cm (◦C)
Ta Air Temperature (◦C)

PPFDdif Diffuse PPFD (µmol photon m−2 s−1)
PPFDdir Direct PPFD (µmol photon m−2 s−1)
fdif Diffuse Fraction (0% - 100%)

In this application example, the ANN framework is used to reconstruct the eddy
flux measurements (“DATA”) as well as the two TBM simulations of ORCHIDEE and
BETHY.

8.3 Benchmarking with all drivers

Benchmarking with all drivers is again the first step of the characterization in Figure
8.2. For DATA, the R2 performance was 92.2(±0.1)% and the unexplained variabil-
ity can be attributed mainly to noise in the measurements (see Section 5.3). For
ORCHIDEE, the ANN models were able to explain 82.5(±0.3)% of the variability.
Since the TBM simulations are purely deterministic, the unexplained variability can
be attributed to the non-instantaneous processes (e.g. lag effects) implemented in the
TBM. For BETHY, the ANN models had a much higher explainability of the TBM
simulations of 93.2(±0.2)%.

As Abramowitz (2005) suggested, ANNs can be used quantitatively as a bench-
mark for the fit performance of TBMs. The ANN model could explain 92.2% of the
variability in the measurements, whereas BETHY reached 79.6% and ORCHIDEE
only 45.2% (see Section 8.1 above). This means that even for the tuned BETHY sim-
ulations, there is potentially over 10% more variability explainable from the climatic
input drivers.

The shape of the NEP response in Figure 8.2 provides qualitative insight in the
differences between the simulations. The measurements (black dots, left) were much
better resembled by the ANN (red dots, left) and BETHY (black dots, right) than
by ORCHIDEE (black dots, middle).
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Figure 8.2: Benchmarking with all ten input drivers for the measurements (DATA),
the simulations of ORCHIDEE, and the simulations of BETHY. The ANN model
output (red circles) and target values (black circles) of the daytime NEP response
are plotted against PPFD .

8.4 Identifying the driver hierarchy

To identify the driver hierarchy, the ANNs were trained with one climatic variable
at a time on each of the datasets (DATA, ORCHIDEE, and BETHY). As expected,
the radiative drivers had the highest mapping performance as primary drivers of the
daytime NEP response, see Figure 8.3 (top). However, the patterns of relevance were
quite different. For example, the relative ratio of the importances of radiative drivers
to meteorological drivers was higher for DATA than for the simulations of BETHY
and especially than for ORCHIDEE.

The difference in patterns was even more pronounced in the secondary driver anal-
ysis Figure 8.3 (bottom). The proportion of diffuse radiation (provided as PPFDdir ,
PPFDdif , or fdif ) was the most important secondary driver of the daytime NEP re-
sponse in DATA (compare Section 5.3). Since both TBMs did not consider diffuse
radiation, this variable had no explanatory power in their simulations.

A surprising trait of the ORCHIDEE simulations was the pronounced relevance
of Rg as a secondary driver in addition to PPFD (and vice versa, not shown). The
two radiative drivers are closely related, since PPFD is the photosynthetically active
part of Rg (see also Figure 5.4). Therefore, Rg should add only little (if any) new
information to the daytime NEP response.1

Looking at the meteorological drivers, Rh showed low relevance while Ta and
VPD (which is a function of Ta and Rh) showed high relevances as secondary drivers
in BETHY. This means that the model reacted more strongly to Ta than Rh. The
high relevance of SWC in ORCHIDEE, compared to DATA, indicates a stronger
impact of rain events in the model than present at the Hainich forest for these two
non-drought summers. Moreover, Ta had only little relevance as a secondary driver
in ORCHIDEE, a lot less than in DATA. This fact can also be seen in the next phase
on the functional relationships below.

1To follow up on the discussion of light response curves in Chapter 7: The light response in
ORCHIDEE is based on a non-rectangular hyperbola with a fixed curvature parameter d of 0.7,
while in BETHY it is based on the Smith sigmoid function.
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Figure 8.3: Top: Primary R2 performance of the ANN models trained with a single
climatic driver at a time. Bottom: R2 performance of the ANN models trained
with PPFD plus a secondary climatic driver. The performance improvement (red)
indicates the relevance as a secondary driver. (See Figure 5.3 for further explanations
on the graphs.)

8.5 Extracting the functional relationships

Again, the ANN framework is used to reconstruct the measurements as well as the
two TBM simulations. The total radiation (provided as PPFD and Rg) was the
dominating climatic control for all three datasets. The most relevant meteorological
drivers of DATA were the Rh, Ta, and VPD(Ta,Rh), respectively, see Figure 8.3.
In the following, the functional relationships of the daytime NEP response to PPFD
plus first VPD and then Ta are further investigated.

ANN modeling of NEP(PPFD ,VPD) in Figure 8.4 looked quite similar for DATA
(left) and BETHY (right), whereas ORCHIDEE (middle) had a very different ap-
pearance. The VPD response is not well captured in the ORCHIDEE simulations
of the Hainich forest, particularly evident in the behavior of the numerical partial
derivatives (Figure 8.4, bottom middle). The ORCHIDEE relationships looked not
quite as distorted when using Rg rather than PPFD as the radiative input driver (not
shown).

The results for NEP(PPFD ,Ta) behaved likewise, see Figure 8.5. DATA and
BETHY were similar, both showing a negative response for high air temperature,
whereas the ORCHIDEE response was flat showing no dependency on Ta.
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Figure 8.4: The daytime NEP response (top) and the numerical partial derivatives
(bottom) modeled with the two climatic drivers PPFD and VPD . The response
is plotted against VPD for the observed DATA (left), ORCHIDEE (middle), and
BETHY (right).
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Figure 8.5: The daytime NEP response (top) and the numerical partial derivatives
(bottom) modeled with the two climatic drivers PPFD and Ta. The response is
plotted versus Ta for the observed DATA (left), ORCHIDEE (middle), and BETHY
(right).
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8.6 Discussing the induced hypotheses
The characterization of the hierarchy of the climatic drivers as well as the functional
relationships of ORCHIDEE and BETHY discloses how the daytime NEP response
is simulated by the TBMs. By comparing these to the relationships extracted from
the measurements (the “truth”), the two TBMs can be evaluated.

Overall, BETHY showed a good representation of the daytime NEP response at
Hainich, but the implementation of diffuse radiation is highly recommended to capture
the full response at this site. This might improve the model to explain the extra 10%
of the variability in the measurements that can be captured by the benchmark ANNs
on DATA.

The poor R2 performance of simulated versus measured data already indicated
some deficits in the ORCHIDEE simulations. The hierarchy of the climatic con-
trols depicted an inexplicable importance of Rg and PPFD as each other’s secondary
drivers. The unusual dependency on VPD and the missing dependency on Ta of
ORCHIDEE are an indication that internal model dynamics must play a key role in
causing distortion and cancellation of the effects. This is in agreement with results of
Abramowitz et al. (2007), who found that the bias errors of three different TBMs, in-
cluding ORCHIDEE, were highly systematic (by using self-organizing maps modeling
the mismatch between simulation and observations).

Hence, the ORCHIDEE simulations do not reproduce some of the critical aspects
of the daytime NEP at the Hainich forest. It would be interesting to see how tuning
of the run would alter the results. A newer version of ORCHIDEE (Zaehle & Friend,
2010) can be run with the diffuse radiation. This might also help to better resemble
the relationships found in the observed DATA.

This application example showed that the presented methodology can be used
not only on observed but also on synthetic ecosystem datasets. The benchmark per-
formance, the derived hierarchy of the climatic drivers, and the extracted functional
relationships provided a wide variety of criteria for the evaluation of two ecosystem
models. This area of application also offers the perspective to perform model-data
synthesis (e.g. Raupach et al., 2005; Wang et al., 2009) by systematically varying the
ecosystem model structure in order to gain information about the internal model dy-
namics. How the synthetic ecosystem datasets produced by the ANN models them-
selves (the ANN model output) can be used for interpolating missing data in the
measurements, is subject of the next chapter.
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Interpolating missing data

One of the drawbacks of the eddy flux measurements is their fragmentation (see Sec-
tion 1.2.3). To calculate daily and annual sums, these measurement gaps need to
be filled. The sums are of widespread interest, e.g. for estimations of the ecosystem
carbon budgets, for the evaluation of TBM simulations, or for scaling to biometric
measurements. Several gap-filling techniques, including ANNs, have been developed
to interpolate the missing NEP data. In a comprehensive comparison of fifteen gap-
filling techniques (Moffat et al., 2007), the performance of the techniques was eval-
uated by comparing observed NEP with predicted (filled) NEP values on artificial
gaps.

As an additional application, the methodology can also be employed as a gap-
filling technique. The relationships of the ecosystem response to all the climatic
drivers mapped in the benchmark ANN models permit the reconstruction of missing
NEP , as discussed in the following chapter. To compare the performance to the other
fifteen gap filling techniques of Moffat et al. (2007), the same “keyfile” for the artificial
gaps and one of the “golden files”, the Hainich dataset from the year 2000, were used.
In contrast to the previous application examples, not only the summer daytime data
but the full yearly datasets were analyzed.
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9.1 Specifying the response query: Gap-filling of
missing NEP

The golden file contains the NEP measurements and an appointed set of associated
meteorological data. Gaps in the meteorological data were previously filled (Moffat
et al., 2007). Only the best quality NEP measurements were provided, resulting in
∼20% gaps in the daytime data and ∼65% gaps during nighttime in the Hainich 2000
dataset.

Secondary datasets with artificial gaps scenarios are generated by flagging 10% of
the data as unavailable, i.e. artificial gaps. Ten percent was chosen as a compromise
between sufficient power for statistical analyses and avoiding excessive additional
fragmentation of the data files. To achieve statistical validity, the artificial gaps
were distributed randomly and each artificial gap length scenario was permuted ten
times, thereby sampling 100%− (100%− 10%)10 = 65% of the total yearly data. The
artificial gaps are superimposed on the already incomplete data in the files, without
regard for the distribution of real gaps in the NEP data.

Different types of artificial gaps from “very short” with a gap length of single
half-hours to “long” with a gap length of ten days were considered in the gap filling
comparison (Moffat et al., 2007). To condense the following analysis, only the ten
very short artificial gap scenarios plus the real gaps in the observed NEP data were
filled.

Daytime and nighttime differentiation

Daytime refers to positive photosynthetic photon flux density (PPFD > 0) and night-
time refers to periods of the day with no light (PPFD = 0). For determining the gap-
filling performance, the weighting of the daytime and nighttime contributions to the
statistical metrics is incorrect when day and night are taken together. More precisely,
the ratio of the number of daytime to nighttime gaps for the real gaps is at odds
with the day-night ratio of the artificial gaps. The percentage of available observed
NEP is 80% for daytime and 35% for nighttime data. Thus, the distribution of real
gaps of 20% daytime to 65% nighttime results in a day-night ratio of approximately
1:3. By contrast, the secondary datasets have ten percent artificial gaps resulting in
8% daytime and 3.5% nighttime gaps, a ratio of approximately 2:1. Therefore, the
analysis of the gap filling results was performed separately for daytime and nighttime
periods.

For the ANN training, the data was also grouped into subsets of daytime and
nighttime data. The separately trained ANN models performed better than the ANN
models trained on the full yearly dataset, even when a step function was included as
an additional input driver to allow the ANNs to distinguish between day and night.
This might be due to the imbalanced ratio of daytime to nighttime training data,
since the full yearly dataset contains more than double the amount of daytime tuples.
Besides, the absence of photosynthesis changes the underlying biological processes
caused by the same input drivers.
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9.2 Generating driver candidates

The meteorological variables provided in the golden file are Rg , PPFD , Ta, Ts ,
SWC , Rh, and Precip. Since only PPFD or Rg are needed, the ecophysiologically
more meaningful PPFD was chosen. Precip has no direct effect on the half-hourly
time scale (see Section 5.4) and was therefore excluded. Two derived latent variables,
OptProd and dOptProd , were added to provide information about the state of the
ecosystem and are further explained below.

The input driver set used thus included the following variables:

PPFD Total PPFD (µmol photon m−2 s−1)
Ta Air Temperature (◦C)
Ts Soil Temperature (at 30 cm) (◦C)
SWC Soil Water Content (%)
Rh Relative Humidity (%)
OptProd Maximum daily value of NEP smoothed over ∼1 month
dOptProd Derivative of OptProd smoothed over ∼3 months

Variables providing information about the state of the ecosystem are necessary
if the gap-filling is performed on yearly data. Their effects were demonstrated by
training the ANNs with PPFD plus one of the potential ecosystem state variables,
see Figure 9.1. The panels each show the course of the year: the left two for the input
drivers and the right panels for the NEP measurements (black) and the ANN model
output (red).

When only PPFD was used as an input driver, the shape of the ANN model output
was flat (top row). Adding any of the ecosystem state drivers changed the shape of
the ANN model outputs to more closely resemble the yearly NEP response, which is
mainly driven by the phenology of the forest. The slowly varying soil temperature
Ts improves the results (second row), though the exact features, e.g. the dropping of
Ts in the summer, have no direct bearing on the ecosystem NEP response.

Bell-shaped fuzzy variables can be used to describe the seasons (spring, summer,
fall, winter). Although the mapping of the ANN model with only one of these fuzzies,
“Fuzzy Summer” (third row) led to a delayed timing, the full set of four fuzzies offered
enough freedom to capture the main shape of the response (not shown).

Almost the same performance as with all four season fuzzies was obtained with
only one variable, the latent variable OptProd derived from the fragmented NEP data.
OptProd (bottom row) describes the maximum daily value of NEP smoothed by a
moving average over ∼1 month and can be regarded as a measure of the optimum
productivity. The ANN model using OptProd was able to capture the basic shape of
the response. For the ANN training on nighttime data, the derivative dOptProd was
of importance, since it provided information about whether the ecosystem is in its
spring onset or autumn senescence phase.
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Figure 9.1: Effect of input variables describing the yearly ecosystem state on the
modeled NEP output. (In the two left columns, all 17520 yearly half-hours are
plotted, whereas in the right column only the subset of the daytime data is shown.)

Preferably, a direct measure of the phenology, such as LAI derived from satellite
data, should be used if available. ANN models using LAI data directly were best at
reproducing the yearly course (not shown).

Unfortunately, the golden file does not contain a variable describing the proportion
of diffuse radiation. Since it proved to be the second most relevant driver to explain
the summer daytime NEP in Section 5.4, PPFDdif was used in an extra gap-filling
run to determine its effect on the gap-filling performance.
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Figure 9.2: R2 (left), SDev (middle), and Bias (right) performance for each of the
ten very short artificial gap scenarios. The benchmark ANN models were trained
separately for daytime (top) and nighttime (bottom). (The error bars show the
standard deviation of ten ANN training permutations.)

9.3 Benchmarking with all drivers

The performance of the ANN models trained with all climatic drivers is shown in
Figure 9.2. The explainability of the variability in the dataset was much higher
during daytime with an average R2 of 87.5%. At nighttime, the signal to noise ratio
is much lower (see also Moffat et al., 2007) and the R2 was only 52.7%.

The bias error mainly depended on the placement of the artificial gaps in the
dataset. This can be deduced from the standard deviation between ANN training
permutations being much smaller than the absolute magnitude of the bias.

Due to the smaller NEP flux magnitudes at nighttime, SDev was lower than
during daytime. The remaining error can again be attributed to the random error
(noise) in the measurements (Moffat et al., 2007; Richardson et al., 2008, and see
also Section 5.3). The effect of filtering the noise by gap-filling can be seen in Figure
9.3, showing the results for modeling the whole time series with only the real gaps.
The ANN model output (red line) is much smoother than the original measurements
(black line). The modeled ANN output can now be used to fill the real gaps in the
measurements.
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Figure 9.3: Half-hourly NEP measured (black) and modeled (red), plotted for the
entire year of Hainich 2000 (left), ten summer days (middle), and ten winter days
(right).
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Figure 9.4: RMSE performance of the gap filling techniques analyzed in Moffat et al.
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of the modeling framework presented here, without (ANN_S2) and with PPFDdif
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85



CHAPTER 9. INTERPOLATING MISSING DATA

9.4 Discussing the induced hypotheses
Figure 9.4 shows the RMSE performance of the ANN framework presented here (red
symbols) in comparison to the other fifteen gap filling techniques of Moffat et al.
(2007). The RMSE was as low as of the other three ANN techniques examined.
Including PPFDdif reduced the daytime RMSE by almost 20% and led to the best
performance of all. This stresses again the importance of the diffuse radiation as a
driver of the daytime NEP response. Hence, it is highly recommended to account for
PPFDdif in gap-filling routines.

For the prediction of the annual sum, a low systematic bias error is an impor-
tant criterion for a gap-filling technique (Moffat et al., 2007). The deviation of Bias
between ANN training permutations was small, much smaller than its absolute mag-
nitude, see Figure 9.2 (right). This indicates that the implementation of the epoch
smoothing (see Section 2.5) indeed fixed the problem of large biases in the earlier ver-
sion of this ANN framework used in Moffat et al. (2007). There, the bias deviations
had been of the order of a factor of ten larger.

This last of the five areas of application demonstrated the use of the method-
ology as a gap-filling technique. The phase of identifying the driver hierarchy can
additionally be used to optimize the selection of input drivers for the ANNs, as in
the case of diffuse radiation. The underlying ANN framework met the criteria of a
“good” gap-filling technique according to the comprehensive gap filling comparison
by Moffat et al. (2007). This also emphasizes the reliability of the modeling results,
which is investigated further in the next chapter. With the gap-filling capability, the
methodology again showed its strength and breadth as an instrument to analyze and
use the information hidden in the large, fragmented, and noisy ecosystem datasets.
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Reliability and conclusions
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Chapter 10

Reliability of the modeling results

The methodology is based on an inductive modeling framework where the functional
relationships are derived exclusively from the data. This chapter explores the relia-
bility of the modeling results obtained in the application examples.

One basic requirement for the reliability of such purely empirical models is their
good generalization beyond the dataset used for training. This generalization ability
is tested with the cross-validation method in Section 10.1. The effect of weight reg-
ularization on the generalization is shown for one example in Section 10.2. How the
uncertainties in the inputs impact the derived functional relationships is explored in
a sensitivity study in Section 10.3. The chapter closes with on overall assessment of
the reliability of the modeling results in Section 10.4.
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Figure 10.1: Error progression during ANN training on Hainich data from the year
2000. The training process was cross-validated with data from a different year (2001,
left) and a different site (Tharandt, right). (The graphs show several error measures
of the training dataset in black and of the cross-validation set in red. The thin dashed
horizontal lines are to guide the eye.)

10.1 Cross-validation
One of the criteria of a good function approximation is the ability of the trained
ANN model to fit new (unknown) data. The opposite is an overfitted model, where
the network has learnt the training set perfectly but interpolates unknown points
erroneously (Rojas, 1996). Overfitting generally occurs when a model has too many
degrees of freedom. Simple and plain functional relationships are usually more robust.
In the ideal case, the derived functional relationships represent only the universally
valid information (causal relations) and not the irrelevant information (noise) in the
dataset.

For noisy training data, the goal of a good generalization contradicts the objective
of a minimization of the error function, since the ANN model should not learn the
noise. Hence if the model has good generalization properties, its performance is likely
to be adversely affected.

Several procedures have been implemented in the modeling framework to avoid
overfitting and ensure good generalization (Chapter 2):

• Keeping the number of initial layers and hidden nodes small in order to decrease
the plasticity of the network;

• Early stopping of the training as soon as the error levels off;

• Pruning of the nodes in the network;

• Penalizing large weights by regularization.

A common method to determine the generalization ability is to train the network
on only part of the dataset and use the rest for cross-validation. With increasing
specialization only of the training dataset, the network performance on the cross-
validation set would decrease.
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Figure 10.2: Error progression during the ANN training on Hainich data from the
year 2000 using the SWC as an additional input driver. The training process without
(left) and with (right) weight regularization was cross-validated with Tharandt data.
(The graphs show several error measures of the training dataset in black and of the
cross-validation set in red.)

In the case of the carbon flux measurements, the data is highly repetitive and
subsets are not independent. To get a more independent dataset, data from a different
year was first used for cross-validation. The left graph in Figure 10.1 shows an
example, where the daytime summer NEP response of the Hainich forest to the
climatic drivers PPFD , VPD , Ta, Ts2 was trained on the data from the year 2000
(black line), and cross-validated with data from the year 2001 (red line). There is
no degradation in performance with increasing number of learning iterations visible
in the cross-validation set, even though the training process was continued without
pruning.

This test was repeated using a dataset from a different site, Tharandt, for cross-
validation. Tharandt is an evergreen needleleaf forest about 250 km east of Hainich.
Here, again, although the overall performance of the cross-validation set in the right
graph of Figure 10.1 is lower, there is neither further improvement nor a significant
degradation. Thus even cross-validation with a different site showed no evidence of the
expected degradation with increasing training iterations, i.e. the further specialization
(learning) on the Hainich dataset did not happen at the expense of the generalization
to the Tharandt dataset.

A possible explanation is that the dataset is still not independent enough, though
Tharandt is a different ecosystem type (evergreen needleleaf versus deciduous broadleaf
forest) in a different region. However, it is more likely that the ANN training is not
overfitting the dataset in the first place, since the over 1000 data tuples are trained on
a network with less than ten hidden nodes (little freedom). Furthermore, the input
as well as the output data is subject to inherent random noise, see properties of the
eddy flux measurements in Section 1.2.3 and estimates of the uncertainty in Section
4.3. This means that even measurements of the same carbon flux under the same
meteorological conditions would result in slightly different input and output values.
The set of noisy data tuples presents an inconsistent learning task for the ANN with
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Figure 10.3: Primary (left) and secondary (right) R2 performance of the ANN models
trained with three different setups of artificial noise added to the input drivers.

a minimum of the error function for the most general behavior, thus a network with a
good generalization; see also the discussion on the impact of input uncertainty below
(Section 10.3).

10.2 Example for regularization

To show the effect of adding the weight regularization term to the error function of
the backpropagation algorithm (Section 2.2), the cross-validation test with Hainich
and Tharandt from the last section was repeated using soil water content SWC as an
additional input driver. SWC has a very different range in the two extracted dataset:
36% to 46% at Hainich and only 9% to 11% at Tharandt.

Since the ANN was trained on the higher Hainich SWC range, the extrapolation
to the much lower Tharandt SWC values during cross-validation resulted in an ir-
regular performance, see Figure 10.2, left. After activating the regularization term
that penalizes large weights, the network performance on the cross-validation dataset
was more stable and remained high, thus showed a more consistent and improved
generalization, see Figure 10.2, right.

10.3 Impact of input uncertainty

The generalization of the response modeled by the ANNs depends not only on the
noise in the output (target) data but also in the input data. The following are error
specifications of the instrument devices used at the Hainich flux tower (Olaf Kolle,
personal communication):

• PPFD : relative error of ±5%,

• Rd : relative error of ±2%,

• Rh: relative error of ±4%,
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Figure 10.4: ANN model predictions (top) and numerical partial derivatives (bottom)
of the daytime NEP response modeled with noisy PPFDdif _c and PPFDdir_c.

• Ta: ±0.2◦C, and
• Ts : ±0.2◦C.

To assess the impact of the input uncertainties on the network performance and
on the functional relationships, a sensitivity study was performed by introducing
artificial uncertainties on the radiation measurements PPFD , PPFDdir , and PPFDdif .
The maximum relative error of 5% (see instrument specifications above) was chosen
as the range of uncertainty. The following artificial scenarios were considered:

1. Uncorrelated random noise (n) of up to 5%,

2. Positive (p) and negative (o) offset of 5%, and

3. Correlated random noise (c) for PPFDdir and PPFDdif of up to 5%.

The study was performed with the same dataset as in Chapter 5. Figure 10.3
shows the plot of the primary and secondary R2 performance. The ANNs with or
without an artificial noise added yielded the same performance, e.g. the bars for
PPFD , PPFDn , PPFDp , and PPFDo all have the same height.

To investigate the impact on the derived functional relationships, the ANN mod-
els were trained with correlated noise on PPFDdir_c and PPFDdif _c. The modeled
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response and even the derivatives in Figure 10.4 (with noise added) closely resemble
those in Figure 5.11 (without noise). There are always slight differences, since one
ANN model is never identical to another ANN model due to the randomly initialized
weights and the randomly chosen order of the data tuples during training. However,
the basic shape of the relationship (form, offsets, magnitude) is not affected. The
same is true for the two other artificial noise scenarios (not shown).

None of the tested scenarios (positive or negative offset and uncorrelated or cor-
related random noise) had a significant impact on the network performances or on
the functional relationships. Indeed, adding noise to the inputs is sometimes used as
a technique to discount an overfitted response and improve the generalization (Reed
& Marks, 1999). (See also discussion on noise in Section 10.1 above.)

10.4 Overall assessment

Purely empirical models with a good generalization will yield reliable results, i.e. high
explainability, robustness, and plausibility. The reliability of the presented modeling
results is assessed for the following five criteria:

Mapping performance: The mapping performance gives a measure how well the
ecosystem response can be reproduced by the model. The benchmarking re-
sults of Section 5.3 attest a high mapping performance of the ANN models.
The standard deviation of the ANN model residuals was even lower than pre-
vious estimates of the random noise for the same dataset. These findings are
supported by other studies (e.g. Abramowitz, 2005; Moffat et al., 2007), where
ANNmodels have outperformed classical semi-empirical methods. Furthermore,
the modeling framework fulfilled the criteria of a good gap-filling technique in
Chapter 9.

Robustness of training permutations: Each training process is different due to
the random initialization of the weights, the random pattern shuffling, and
thereby variable node pruning. This leads to differences in the final node struc-
tures and weight parameters of the ANN models even for the same training
dataset. However, the performance of the ANN models should be independent
from the individual training process. To get a measure of the robustness, each
training was repeated ten times. The obtained standard deviation over ten ANN
training permutations is almost invisible in all of the primary, secondary, and
tertiary R2 performance plots, and is only a little larger but still small for the
SDev and sensitivity plots (see respective figures throughout this manuscript).
The small impact of the training permutations attests to the robustness of the
ANN training.

Robustness of driver relevance: Another important aspect is the sensitivity of
the ANNs to the way a climatic driver is provided in the dataset. In the case
of the daytime response, the second most relevant information next to the total
light was the proportion of diffuse light. This information was presented to the
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ANN models as total plus diffuse radiation, total plus direct radiation, total
radiation plus diffuse fraction, or as direct plus diffuse radiation (see Section
5.4 and 5.5.2). Each of these combinations yielded the same R2 network perfor-
mance, demonstrating the outstanding ability of the ANNs to extract the cor-
relations of the input drivers with the responding output even when the inputs
change units, magnitude, or are (non-)linearly transformed. The independence
from the representation of the input drivers also proves the applicability of the
ANN mapping performance as a measure of the relevance of the climatic drivers.

Robustness of functional relationships: A good generalization beyond the train-
ing dataset also implies that the derived functional relationships remain (almost)
the same for slightly different training data. One example is given in Section
10.3 above, where the functional relationships were robustly derived, even with
artificial noise added to the inputs. Since the two ANN models (with and with-
out noise) were trained separately, this also indicates that the derived functional
relationships were independent of the individual training process.

Plausibility of functional relationships: Last but not least, the functional rela-
tionships should be not only robust but also plausible. The plausibility of the
functional relationships extracted in this study are discussed throughout the
manuscript. For example, the purely empirical functional relationship obtained
for the light response in Chapter 7 agrees well with current plant physiological
hypotheses. Though this might be expected, it is not the case for some of the
other commonly used semi-empirical light response curves. Other examples are
the results of the high light use efficiency of diffuse radiation in Section 5.5.2 or
the sensitivity to vapor pressure deficit in Section 5.6. Again, these results are
supported by the literature.

The modeling framework performed well for each of the five criteria and can hence
be assumed to produce reliable modeling results. The high reliability also points to
and affirms the capability of artificial neural networks to be used in an inductive
manner as a glass box.

The examined aspects, the cross-validation, the regularization example, the sen-
sitivity study of the input uncertainty, and the overall assessment, all attested to a
good generalization ability and thus a high reliability of the modeling results. How-
ever, a good generalization of the relationships present in the training dataset does
not necessarily mean that these relationships have universal generality. Guidance for
setting up the dataset to be representative for the queried ecosystem response and for
interpreting the purely empirical models to induce hypotheses is provided in Chap-
ter 4. These guidelines need to be taken into consideration when using an inductive
modeling approach to derive ecophysiological properties.
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Conclusions and outlook

Ecosystem datasets are usually so complex, noisy, and even fragmented that the un-
derlying causalities cannot be obtained just by visual evaluation of the measurements.
To extract the causalities with as little prior information as possible, an inductive
methodology was developed. The methodology is based on artificial neural networks
and allows an inverse mathematical characterization of the ecosystem response to the
climatic controls directly from the data. The inverse characterization can be applied
to both observational as well as synthetic datasets.

The different areas of application of the methodology were all demonstrated for
the same ecosystem response, the daytime net carbon response of the Hainich forest:

• The comprehensive characterization identified the climatic controls of the ecosys-
tem response as well as their underlying functional relationships and sensitiv-
ities. The often neglected diffuse radiation turned out to be the second most
important driver of the daytime response.

• The hypothesis regarding the net effect of the diffuse radiation on net carbon
flux was tested using two theoretical drivers. The testing supported previous
conclusions obtained with a biophysical model that there is an optimum range
for low fractions of diffuse light.

• Seven semi-empirical equations for modeling the light response were assessed
with the sigmoid curve showing the best matching characteristics.

• Synthetic data from two complex prognostic terrestrial biosphere models was
characterized in comparison to the relationships present in the observational
data, revealing some significant shortcomings in the model simulations.

• The use of the methodology as a gap-filling technique provided reliable estimates
of the missing net carbon flux data.

The data-derived physiological properties corroborated existing hypotheses or indi-
cated new or different features present in the data. The wide range of application
areas and their ecophysiological relevance shows the capability of the methodology to
serve as a key instrument for analyzing ecosystem datasets. The results also highlight
the benefit of the methodology to provide a new link between the observations and

95



CHAPTER 11. CONCLUSIONS AND OUTLOOK

their semi-empirical representations in the modeling world. By supplying this link,
this inductive methodology is complementary to the classic hypothetic-deductive ap-
proach, thereby furthering the understanding of the underlying processes as well as
promoting their implementation in models. This, in turn, will help in predicting the
effects of changing environmental conditions on the terrestrial biosphere.

The ecosystem of a mature beech forest in a temperate climate, the Hainich forest,
was chosen as the common basis of the application examples. The worldwide net-
work of eddy flux towers in FLUXNET offers the opportunity to investigate ecosys-
tems ranging from the arctic to the equatorial savannah. Applying the inductive
methodology to the various land vegetation types and climate zones will advance the
understanding of the net carbon fluxes between the terrestrial ecosystems and the at-
mosphere. For managed ecosystems, the ability to include theoretical variables, such
as a fuzzy variable to describe the harvesting event, will be of benefit. The theoretical
variables also offer the possibility to include time lag effects and to determine their
relevance for the ecosystem response.

The methodology is not limited to the net carbon flux but can be extended not only
to carbon flux partitioned into gross primary production and respiration fluxes, but
also to the energy and momentum fluxes, or to other greenhouse gases. Another field
is its use as a model-data fusion tool to study the behavior of more complex models
such as terrestrial biosphere models. Hence, there are a wide variety of potential
applications and I am looking forward to pursuing them.
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Appendix A

Technical implementation

The technical implementation of the methodology required:

1. Adaptation of ANNs as an inductive modeling framework (Chapter 2),

2. Implementation of the data analysis tools (Chapter 3), and

3. A highly flexible data setup to specify the response query and generate the
driver candidates with automated processing routines for the different phases
(Chapter 4).

The required versatility and flexibility was achieved with object-oriented program-
ming in C++. The program makes use of the extensive CERN-ROOT libraries (Brun
& Rademakers, 1997) for file input/output of the class instances as well as for pro-
ducing the 2D and 3D graphics. ROOT also comes with a C++ line interpreter called
CINT, which permits flexible prototyping and direct code execution.

The following sections describe the object-oriented network implementation (Sec-
tion A.1), the program structure (Section A.2), the program flow (Section A.3), and
give an example of a typical pattern generation script (Section A.4) and run script
(Section A.5).
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Figure A.1: Inheritence scheme of the backpropagation node classes.

A.1 Object-oriented network implementation

In contrast to many purely numerical neural network algorithms, the implemented
algorithm is fully object-oriented with each artificial neuron (node) and each link
representing an individual entity (after Rogers, 1996). This object-oriented approach
has several advantages, such as:

• The topology of the network is fully flexible in layers, nodes, and their connec-
tions;

• Each node and each link can in principle have different attributes and behavior;

• The node and link classes can be implemented with inheritence.

The object-oriented implementation of the backpropagation algorithm (Section
2.2) directly corresponds to the graphed backpropagation diagrams of Figure 2.2.
Each node is an entity, which locally stores all information relevant to its operation
such as its output value (right side). This information was simply extended to also
store the derivative (left side) and other attributes such as the sum of node activa-
tions and the string of the propagated analytical function. The link object stores
bi-directional pointers to the two connected node objects to go forward (top step)
and backward (bottom step). Each link objects also stores the weight and weight
update (delta) value.

The nodes and links were both implemented as inherited classes. All nodes are
derived from one base backpropagation node object (Figure A.1), where the basic
characteristics like the error and activation function are defined. Each derived node
(output, hidden, input, and bias) expands on or modifies the functionality inherited
from the preceding node. Two link types are derived from the same base link class
and only differ in their weight update rules to accommodate the two execution modes,
online and epoch, of the backpropagation algorithm. The object-oriented network
implementation is the heart of the modeling framework.
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Partial Derivative

Virtual Spreadsheet 
•  Upload of multiple data files 
•  Data manipulation: 

•  Mathematical operations 
•  Data filtering (gaps, threshold, 
ranges) 
•  Generation of theoretical 
drivers 

•  ANN pattern generation 
•  Picking of inputs/outputs 
•  Masking (e.g. day/night) 
•  Pre-sampling 
•  Cross-validation sets 

•  Gap-filled datasets 
•  MDV (mean diurnal variation) 
•  ANN 

ANN Training  
•  Network (re)initiali-
zation 
•  MC starting weights 
•  Initiate online learning 
•  Early stopping 
•  Node pruning 
•  Pattern bootstrapping 
•  Edge training 
•  Epoch smoothing 

BP Algorithm 
•  Any feedforward 
network topology 
•  Backpropagation with 
momentum and/or 
regularization 
•  Forward runs  
•  Online/epoch learning 
•  Pattern randomization 
•  Analytical network 
function 
•  Partial derivatives 
•  Goodness factor 
•  Weight analysis 

ANN Data Analysis 
•  Routines: benchmarking, 
primary, secondary, tertiary, 
masks, keyfile 
•  Loading and (un)scaling of 
ANN pattern file 
•  Initiate ANN training 
•  Saving/reloading of trained 
ANNs 
•  ANN data analysis (driver 
relevance, function analysis, 
sensitivities) 
•  Initiation of the analysis plots 
•  Saving of analysis results 

User Interface 
•  Offline (script) 
•  Online (interpreter) 

ROOT Plots 
•  Generation of 2D and 
3D graphics 
•  Online ANN training 
graphics 

Helper Classes 
•  File utilities 
•  Statistics, math 
•  Randomizer 
•  Fuzzy set generation 

Figure A.2: Sketch of the five main modules (colored) plus two auxiliary modules
(gray) of the program with a list of their core functions. (The diagrams below show
a typical output.)

A.2 Program structure
The modeling framework has been embedded in a modular program with a hierarchi-
cal structure (Figure A.2). The top module is the User Interface, where commands
can be entered offline in a script or directly online using the interpreter. The user
commands access either the Virtual Spreadsheet or the ANN Data Analysis module.

The Virtual Spreadsheet module permits flexible pattern generation. Here, the
response query is specified and driver candidates are generated, with a typical pattern
generation script provided below (Section A.4).

The ANN Data Analysis module accommodates the automated processing of these
generated patterns. It pipes via the ANN Training module to the BP Algorithm
module, which contains the object-oriented network implementation described above.
The following six processing routines for training and analyzing the ANN models were
developed to implement the different phases of the methodology:

b) Benchmark with all inputs,

p) Primary driver training on single inputs,

s) Secondary driver training on first plus secondary inputs,

t) Tertiary driver training on first two plus tertiary inputs,

m) Masking of data for grouping and binning, and

k) Keyfile scenario masks.

The labels in the beginning are used to specify the processing routine by the user.
A typical specification ini to process a specific pattern in the ANN Data Analysis
module is provided below (Section A.5).

99



APPENDIX A. TECHNICAL IMPLEMENTATION

Virtual 
spreadsheet 

ANN 
analysis ROOT file 

Extract 

Run Save 

Load 

Train 

Step 1: 
Pattern 

Step 3: 
Analysis 

ANN output file 

Generated I/O files Runtime data 

Virtual 
spreadsheet 

DATA files 

ANN 
training 

Step 2: 
Training Pattern file 

Pattern file 

ROOT file 

Save 

Load 

Save 

Gap-filled DATA file 
DATA files 

Step 4: 
Gap-filling 

Pattern file 

Analysis plots & txt 

ANN output file 

Ecosystem DATA Legend: Result files 

Figure A.3: Schematic of the four steps of the program.

The modules ROOT Plots and Helper Classes contain independent auxiliary func-
tions that are commonly accessible.

A.3 Program flow
The flow of the program can be divided into the four steps presented in Figure A.3:

Pattern: Loading of the ecosystem data file(s) into the Virtual Spreadsheet. Gen-
eration of the pattern. Saving of the pattern dataset to a file.

Training: Loading of the pattern file into the ANN Data Analysis module. ANN
trainings on the pattern (sub)sets. Saving of class instance of each trained ANN
model and the training pattern information to a ROOT file.

Analysis: Reloading of the trained ANN models and pattern (sub)sets into the ANN
Data Analysis module. Data analysis. Saving of the modeled ANN output and
the analysis plots and results to files.

Gap-filling: For gap-filling, loading of the ANN output and the original ecosystem
data files into the Virtual Spreadsheet. Generation of the gap-filled dataset.
Saving of the gap-filled dataset to a file.

Each step can be executed and repeated separately. In Step 1, the pattern gener-
ation in the Virtual Spreadsheet is fully independent from the pattern processing.

Since the processing of the different routines in the ANN Data Analysis module
produces multiple trained ANNs on specific pattern (sub)sets, it became necessary to
also separate the training and analysis steps from each other. To perform for example
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the primary driver analysis shown in Figure 5.3, the ANNs are trained ten times on
each of the twenty-five single drivers, resulting in a total of 250 individual trained
ANN models. Therefore, in Step 2, the ANN model, its training properties, and its
training pattern information are saved after each training process. This way, the time
consuming training process can be interrupted and restarted any time. The trained
ANN models are then (re)used for various setups of the analysis in Step 3.

In the last step, Step 4, the ANN model output can be used to gap-fill the original
ecosystem dataset.

A.4 Example of a pattern generation script

To generate a pattern, direct user input or a script specifying the response query and
the driver candidates is processed in the Virtual Spreadsheet. The queried response
is extracted from the ecosystem dataset(s) by setting up filters, masks, ranges and
thresholds. To generate the driver candidates, observed variables are picked or new
theoretical variables can be computed. All variables that have been selected as input
or output are written to a pattern file with a detailed description of the pattern
generation setting in its header. The data is saved in ascii format (*.txt) in a file
named with a pattern-specific ID, consisting of the site name, the site years, and a
unique pattern number.

As an example, the script to setup the pattern for characterizing the daytime
NEP response of the Hainich forest in Chapter 5 is shown in Figure A.4. First, the
ecosystem dataset is specified as a half-hourly dataset from the Carboeurope database
with processing level 3 (CE3_h) of the Hainich site (DEHai) for the years 2000 to
2002 (00-02) and loaded (lines 2 and 3). For the canopy temperature, an auxiliary
file is uploaded (line 4).

Next, the response query is specified. All but the best quality carbon flux data is
filtered1 (line 7), the column NEP = −NEE added (line 8), and picked as an output
(line 10). The data tuple range is limited2 to the active season of the month June to
September and to the daytime (half-hours with light) response (lines 11 to 16).

In the following lines, the driver candidates are generated. First all observed
radiative and meteorological variables plus the provided potential radiation Rpot are
picked as inputs (lines 20 and 21). Then the theoretical variables are generated, the
diffuse fraction fdif and diffuse and direct PPFD (lines 23 to 27), the vapor pressure
deficit VPD (line 28), the daily mean daytime temperature Tm (line 30), a fuzzy
variable for the time of the day (line 31), and the past half-hour of NEPhh (line 32).
All of these are picked as inputs (line 34).

At the end of the script, the mask is set to flux bins (line 37) and the pattern is
written to a file (line 38).

1Filtered data tuples will be saved to the pattern file (e.g. to be filled) but not used for ANN
training.

2Data tuples within the limited range will be saved and the ones outside discarded.
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1 //∗∗∗ Upload the ecosystem data ∗∗∗
2 Workbook wb("CE3_h","DEHai","00-02"); //set ecosystem dataset
3 wb.LoadMainFile(); //upload
4 wb.LoadAuxFile("f_Tc","DEHai","00-02"); //upload auxiliary dataset
5
6 //∗∗∗ Specify the response query ∗∗∗
7 wb.FilterData("qf_NEE_st",’>’,0); //filter all but best quality (flag = 0)
8 wb.NegOfCol("NEE_st","NEP"); //add NEP column
9 wb.FilterData("NEP",’<’,−10); //filter one extreme outlier
10 wb.PickCol(’o’,"NEP"); //pick NEP as output
11 wb.LimitRange("Month",’&’,6,9); //limit to months June to Sept
12 wb.PickMultiCol(’s’,"YEAR Month"); //pick as standard (for reference)
13 wb.LimitRange("PPFD",’>’,5); //limit to half−hours with light
14 wb.LimitRange("Rg",’>’,1); //(just to make double sure)
15 wb.FilterData("PPFD",’\%’,0,10); //filter up to 10 since often unclean
16 wb.LimitRange("qf_Rg",’=’,0); //limit range to best quality (flag = 0)
17
18 //∗∗∗ Generate driver candidates ∗∗∗
19 //Pick the observed drivers plus the provided R_pot
20 wb.PickMultiCol(’i’,"SWC Rh Precip Ta Tc Ts1 Ts2 Gs ZL WD WS ustar");
21 wb.PickMultiCol(’i’,"PPFD Rg Rd Rr Rn R_pot"); //pick as inputs
22 //Generate the theoretical drivers
23 wb.FractionOf2Cols("Rd","Rg","f_dif"); //calculate f_dif
24 wb.LimitRange("f_dif",’{’,1,GAP,ON); //only plausible values <1
25 wb.LimitRange("f_dif",’}’,0.005); //discard unclean range around 0
26 wb.ProductOf2Cols("PPFD","f_dif","PPFDdif"); //calculate PPFDdif
27 wb.DifferenceOf2Cols("PPFD","PPFDdif","PPFDdir"); //calculate PPFDdir
28 wb.VPDCol("Ta","Rh"); //calculate VPD
29 wb.LimitRange("VPD",’<’,18); //discard 5 outliers
30 wb.DailyMeanOfCol("Ta","T_m","PPFD",’d’); //calculate T_m
31 wb.Fuzzify(’d’,"Fuzzy"); //sinus curve for morning/afternoon
32 wb.PastHHOfCol("NEP","NEP_hh"); //add past half−hour to data tuples
33 wb.FilterData("NEP_hh",’<’,−10); //filter again one outlier (see above)
34 wb.PickMultiCol(’i’,"f_dif PPFDdir PPFDdif VPD T_m Fuzzy NEP_hh");
35
36 //∗∗∗ Set mask and write pattern to file ∗∗∗
37 wb.SetMPC(’f’); //set mask ’f’ = masking of fluxes to bins of width 5
38 wb.WritePatternFile();

Figure A.4: Script to generate the pattern for characterizing the daytime NEP
response of the Hainich forest in Chapter 5.

After running the script, the pattern used for the analysis in Chapter 5 was gen-
erated. The pattern had been assigned the pattern ID DEHai00-02_p0264, as can be
seen in the header of the corresponding analysis plots.
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1 b 1 25 10 NEP PPFD PPFDdir PPFDdif Rg Rd Rr Rn Ta T_m Tc Ts1 Ts2 Gs SWC . . .
2 p 1 25 10 NEP PPFD PPFDdir PPFDdif Rg Rd Rr Rn Ta T_m Tc Ts1 Ts2 Gs SWC . . .
3 s 1 25 10 NEP PPFD PPFDdir PPFDdif Rg Rd Rr Rn Ta T_m Tc Ts1 Ts2 Gs SWC . . .
4 t 1 25 10 NEP PPFD PPFDdir PPFDdif Rg Rd Rr Rn Ta T_m Tc Ts1 Ts2 Gs SWC . . .
. . .
6 b 1 2 10 NEP PPFDdir PPFDdif
. . .
10 b 1 3 10 NEP PPFDdir PPFDdif VPD

Figure A.5: DEHai00-02_p0264.ini with the specifications of the processing routines
used to produce the various results presented in Chapter 5.

A.5 Example of a typical specification file
To process a specific pattern, the user needs to specify the processing routine, the
(subset of) inputs and outputs to use for the ANN data analysis, and the number
of training repetitions. Each new setup of a processing routine and combination of
inputs and outputs is assigned a new version number. For later reference, the setup
specifications are saved to a pattern ini-file

Figure A.5 shows the ini-file of pattern DEHai00-02_p0264 with the specifications,
that were used to produce the various results presented in Chapter 5. The first
column is the setup version number, the second column the label of the processing
routine described above, the third and fourth column are the number of outputs and
inputs respectively, and the fifth column is the number of training permutations. The
next columns are the variables names, starting with the outputs and followed by the
inputs. The setup version #1 specifies for example the benchmarking (b) runs of
Section 5.3 with 1 output, 25 inputs, and 10 training permutations. To (re)process
setup version #1, the following two lines of code are executed:

ANNanalysis eco_response; //initialize class
eco_response.Process("DEHai","00−02",264,1); //process #1 of DEHai00−02_p0264

The corresponding analysis plots and results are produced and saved automatically.
The title of the plots and results files contains the type of plot, the pattern-specific
ID, the version number of the training setup, the processing routine, and the training
permutation. For example, the title of the scatterplot in Figure 5.1 generated by
setup version v01 for the benchmarking run b00 and training permutation 00 was:
Output versus Target DEHai00-02_p0264_v01_b00_00.

The technical implementation of the methodology resulted in a program with
seven modules and over 15000 lines of code. The run time of the ANN data analysis
is mainly determined by the training of the ANN models, more precisely by the size
of the dataset (number of presented pattern tuples), the network structure (number
of nodes and layers), and the training progression (number of iterations). The results
presented in this manuscript were performed on a 2.4 Ghz Intel 2 dual core processor
and one ANN training took from several seconds up to minutes.
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